Homework 8: Limits of Functions

Assignments should be **stapled** and written clearly and legibly.

- 1. Let $A \subseteq B$ be two sets of real numbers. We say that A is **dense** in B if $\overline{A} = B$. Prove that \mathbb{Q} is dense in \mathbb{R} . (In other words, prove $\overline{\mathbb{Q}} = \mathbb{R}$.)
- 2. \$5.1, #7(a), #13 (the Squeeze Theorem).
- 3. For $\lim_{x\to 2} (x^2 + 2x + 3) = 11$, illustrate the $\epsilon \delta$ definition of a limit by finding values of δ that correspond to $\epsilon = 1$ and $\epsilon = 0.1$.
- 4. Determine the following limits, and then use the $\epsilon \delta$ definition of limit to prove your answers.

(a)
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3}$$

(b) $\lim_{x \to 2} x^4$

- 5. Use the Squeeze Theorem to prove that $\lim_{x \to 0} \left(x \sin\left(\frac{1}{x}\right) \right) = 0$. Make sure to state what D is.
- 6. Let $f: D \to \mathbb{R}$ and let a be a limit point of D. Suppose that $\lim_{x \to a} f(x) > 0$. Prove that there exists a deleted neighborhood $N^*_{\delta}(a)$ of a such that f(x) > 0 for all $x \in N^*_{\delta}(a) \cap D$.