Homework 13: The Riemann Integral

Directions. Assignments should be **stapled** and written clearly and legibly.

- 1. Let $f(x) = x^2 x$ and $P = \{0, \frac{1}{2}, 1, \frac{3}{2}, 2\}$. Find U(f, P) and L(f, P).
- 2. Suppose that $f:[a,b] \to \mathbb{R}$ is continuous, $f(x) \ge 0$ for all $x \in [a,b]$, and f(x) > 0 for at least one value $c \in [a,b]$. Using definitions, prove that $\int_a^b f > 0$. (You may assume that f is integrable.)
- 3. If a < b < c < d and f is integrable on [a, d], prove that f is integrable on [b, c].