Univ. of Wisconsin - Parkside
Math 301
October 10, 2025
Homework 8: Null Space and Column Space of a Matrix
Instructions. Assignments should be stapled and written clearly and legibly.
-
A matrix \(A\) and an echelon form of \(A\) are given:
\begin{equation}
A=
\begin{bmatrix}
\pe 1 & \pe 2 & -4 & \pe 3 & \pe 3\\
\pe 5 & \pe 10 & -9 & -7 & \pe 8\\
\pe 4 & \pe 8 & -9 & -2 & \pe 7\\
-2 & -4 & \pe 5 & \pe 0 & -6
\end{bmatrix}
\sim
\begin{bmatrix}
\pe 1 & \pe 2 & -4 & \pe 3 & \pe 3\\
\pe 0 & \pe 0 & \pe 1 & -2 & \pe 0\\
\pe 0 & \pe 0 & \pe 0 & \pe 0 & -5\\
\pe 0 & \pe 0 & \pe 0 & \pe 0 & \pe 0
\end{bmatrix}
\end{equation}
- Give any nonzero vector in \(\nul A\).
- Find a basis for \(\nul A\). What is \(\dim(\nul A)\)?
- Find a basis for \(\col A\). What is \(\dim(\col A)\)?
- Without using a calculator or computer, find a nonzero vector in \(\nul A\), where \begin{equation}A = \begin{bmatrix} 51 & 51 & 58 & 2 & 7\\ 7 & 2049 & 9 & 1 & 2\\ 3 & 17 & 5 & 0 & 2\\ 9 & 2025 & 15 & 3 & 6\\ 3 & \sqrt{2} & 8 & 37 & 5\\ 7 & \pi & 23 & 19 & 16\\ 11 & 3.14 & 14 & 0 & 3 \end{bmatrix} \end{equation}
-
For each of the following vector spaces, find a matrix \(A\)
such that the vector space is equal to \(\nul A\) . Then find a basis
for the vector space.
- The line \(y=5x\) in \(\bR^2\).
- The plane \(x+2y+3z=0\) in \(\bR^3\).
- Find a basis for \(\col \begin{bmatrix} 1&2\\ 0&3\\ 2&4 \end{bmatrix} \) without doing row reduction.
- Find a basis for \(\col \begin{bmatrix} 1&3\\ 2&6\\ 3&9 \end{bmatrix} \) and then a basis for \(\nul \begin{bmatrix} 1&3\\ 2&6\\ 3&9 \end{bmatrix} \), both without doing row reduction.
- Construct a \(2\times 3\) matrix \(C\) such that \(\nul C= \col \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix} \).
- Construct a matrix \(A\) such that \(\col A= \nul \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix} \).
-
Let
\(
A =
\begin{bmatrix}
1 & 0 & -3\\
0 & 4 & -2\\
2 & 6 & \pe 3
\end{bmatrix}
\), and let \(\bv_1\), \(\bv_2\), and \(\bv_3\) be the
three columns of \(A\).
- How many vectors are in Span\(\{\bv_1, \bv_2, \bv_3\}\)?
- How many vectors are in \(\col A\)?
- How many vectors are in \(\{\bv_1, \bv_2, \bv_3\}\)?
- Give two vectors in \(\col A\) which are not in \(\{\bv_1, \bv_2, \bv_3\}\)?
- Write the vector equation which is equivalent to the matrix equation \(A\mathbf{x} = \mathbf{0}\).
- Write the linear system of equations which is equivalent to the matrix equation \(A\mathbf{x} = \mathbf{0}\).
- Let \(A\) be an \(m\times n\) matrix. Prove that \(\nul A=\{\bz\}\) if and only if the columns of \(A\) are linearly independent.