Homework 8: Null Space and Column Space of a Matrix

- 1. In Homework 6, you found that $\{1, \ln(2x), \ln(x^2)\}$ is linearly dependent in $F(0, \infty)$. Let $W = \text{Span}\{1, \ln(2x), \ln(x^2)\}.$
 - (a) How do we know that W is a subspace of $F(0, \infty)$?
 - (b) Find a basis \mathcal{B} for W, and find dim W.
 - (c) Determine whether $\ln(7x^{12})$ is in W. If so, find $[\ln(7x^{12})]_{\mathcal{B}}$.

You should justify your answers, but proofs are not required.

2. A matrix A and an echelon form of A are given:

$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & 3\\ 5 & 10 & -9 & -7 & 8\\ 4 & 8 & -9 & -2 & 7\\ -2 & -4 & 5 & 0 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -4 & 3 & 3\\ 0 & 0 & 1 & -2 & 0\\ 0 & 0 & 0 & 0 & -5\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for $\operatorname{Nul} A$. What is $\dim(\operatorname{Nul} A)$?
- (b) Find a basis for $\operatorname{Col} A$. What is $\dim(\operatorname{Col} A)$?
- 3. Without using a calculator or computer, find a nonzero vector in Nul A, where

	51	51	58	2	7]
	7	2001	9	1	2
	3	17	5	0	2
A =	9	2023		3	6
	3	$\sqrt{2}$	8	37	5
	7	π	23 14	19	16
	11	3.14	14	0	3

- 4. For each of the following vector spaces, find a matrix A such that the vector space is equal to Nul A. Then find a basis for the vector space.
 - (a) The line y = 5x in \mathbb{R}^2 .
 - (b) The plane x + 2y + 3z = 0 in \mathbb{R}^3 .
- 5. Find a basis for $\operatorname{Col}\begin{bmatrix} 1 & 2\\ 0 & 3\\ 2 & 4 \end{bmatrix}$ without doing row reduction.
- 6. Find a basis for Col $\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$ without doing row reduction, and then a basis for Nul $\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$ without doing row reduction.

7. Construct a 2 × 3 matrix C such that Nul C = Col $\begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$.

8. Construct a matrix A such that $\operatorname{Col} A = \operatorname{Nul} \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 9 \end{bmatrix}$.

9. Let $A = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 4 & -2 \\ 2 & 6 & 3 \end{bmatrix}$, and let $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 be the three columns of A.

- (a) How many vectors are in $\text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- (b) How many vectors are in $\operatorname{Col} A$?
- (c) How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- (d) Give two vectors in Col A which are not in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- (e) Write the vector equation which is equivalent to the matrix equation $A\mathbf{x} = \mathbf{0}$.
- (f) Write the linear system of equations which is equivalent to the matrix equation $A\mathbf{x} = \mathbf{0}$.