Homework 7: Basis

Instructions. Assignments should be **stapled** and written clearly and legibly. All answers must be justified. Problem 5 is optional.

- 1. \$4.4, #13(b), 14(b), 24(a)(b), 27(a)(b).
- 2. Suppose that \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in a vector space V.
 - (a) Suppose that \mathbf{u} is not a scalar multiple of \mathbf{v} , and \mathbf{v} is not a scalar multiple of \mathbf{u} . Is $\{\mathbf{u}, \mathbf{v}\}$ necessarily linearly independent? If so, prove it. If not, give a concrete counterexample.
 - (b) If it is only known that \mathbf{u} is not a scalar multiple of \mathbf{v} , is $\{\mathbf{u}, \mathbf{v}\}$ necessarily linearly independent? If so, prove it. If not, give a concrete counterexample.
 - (c) Suppose that none of the three vectors \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 is a scalar multiple of either of the other two vectors. In other words, \mathbf{u}_1 is not a scalar multiple of \mathbf{u}_2 or of \mathbf{u}_3 ; \mathbf{u}_2 is not a scalar multiple of \mathbf{u}_1 or of \mathbf{u}_3 ; and \mathbf{u}_3 is not a scalar multiple of \mathbf{u}_1 or of \mathbf{u}_2 . Is $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ necessarily linearly independent? If so, prove it. If not, give a concrete counterexample.
- 3. Suppose that $\mathcal{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ is a linearly idependent set of vectors in a vector space V. Prove that
 - (a) Span \mathcal{B} is a subspace of V.
 - (b) \mathcal{B} is a basis for Span \mathcal{B} .
- 4. In this problem you will prove that $\{e^x, e^{2x}\}$ is a basis for $\text{Span}\{e^x, e^{2x}\}$.
 - (a) Prove that $\{e^x, e^{2x}\}$ is linearly independent in $F(-\infty, \infty)$.
 - (b) Prove that $\text{Span}\{e^x, e^{2x}\}$ is a subspace of $F(-\infty, \infty)$.
 - (c) Use Problem 3 to prove that $\{e^x, e^{2x}\}$ is a basis for $\text{Span}\{e^x, e^{2x}\}$.
- 5. Let p, q, r and s be polynomials of degree at most 3. Which, if any, of the following two conditions is sufficient for the conclusion that the polynomials are linearly independent?
 - (a) At 1 each polynomial has the value 0.
 - (b) At 0 each polynomial has the value 1.