Homework 6: Linear Independence, Basis

Assignments should be **stapled** and written clearly and legibly.

- 1. $\S4.3, \#5(a), 12, 15(a),$
- 2. Determine whether $\{1, \ln(2x), \ln(x^2)\}$ is linearly independent in $F(0, \infty)$. Justify your answer (a) using the definition of linear independence/linear dependence (from class), and (b) using Theorem 1.4 (from the study guide).
- 3. Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ be vectors in a vector space V. Prove the following:
 - (a) Let $\mathbf{v}_1, \ldots, \mathbf{v}_p$ span the vector space V, and let \mathbf{u} be any vector in V. Then $\{\mathbf{u}, \mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly dependent.
 - (b) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ be linearly independent. Then $\mathbf{v}_2, \dots, \mathbf{v}_p$ cannot span V.

Hint. Use Theorem 1.4 from the study guide for both parts.

4. $\S4.4$, #19(a)(b), 20

5. Let $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a set of vectors in a vector space V such that every vector **u** in V can be written in exactly one way as a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$. Prove that \mathcal{B} is a basis for V.

Note that in this problem you are being asked to prove the converse of Theorem 1.6. You must prove two things: \mathcal{B} spans V, and \mathcal{B} is linearly independent.