Homework 4: Subspace, Linear Combination, Span

Instructions. All answers to textbook problems should be justified. For problems 5 and 6 (except 6(c)), you may not Theorems 1.2 or 1.3 from the study guide. Assignments should be **stapled** and written clearly and legibly. Problem 7 is optional.

- 1. $\S4.2, \#3(a), \#5(a)(b)$.
- 2. Give an example of a nonempty subset of $M_{2,3}$ which is not a subspace of $M_{2,3}$.
- 3. Consider the set W of all vectors in \mathbb{R}^4 of the form $\begin{bmatrix} a \\ b \\ -2b \\ a \end{bmatrix}$.
 - (a) Prove that W is a subspace of \mathbb{R}^4 using Theorem 1.2 from the study guide.
 - (b) Prove that W is a subspace of \mathbb{R}^4 using Theorem 1.3 from the study guide.
- 4. \$4.2, #10(b)(c), 12(a)(b), 14.
- 5. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in a vector space V. Prove that $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ is a subspace of $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.

Hint. Begin the proof as follows: "Suppose that \mathbf{z} is in Span $\{\mathbf{u}, \mathbf{v}\}$. I must show that \mathbf{z} is also in Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$."

- 6. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ be vectors in a vector space V. Suppose that \mathbf{x} and \mathbf{y} are in $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ and c is a scalar.
 - (a) Prove that $\mathbf{x} + \mathbf{y}$ is in Span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
 - (b) Prove that $c\mathbf{x}$ is in Span{ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ }.
 - (c) What do parts (a) and (b) tell you about $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$? (You may use any theorem to answer this question.)

Hint. The proofs of (a) and (b) are taken from the proof of a theorem from class.

7. (Putnam Competition) Let S be a set and let \circ be a binary operation on S satisfying the two laws

$$x \circ x = x$$
 for all x in S, and
 $(x \circ y) \circ z = (y \circ z) \circ x$ for all x, y, z in S

Show that \circ is associative and commutative.