Homework 14: The Matrix of a Linear Transformation

- 1. \$1.5, #9, 11(a), 16.
- 2. In this problem you will prove the following trigonometric identities:

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
(1)

Use the following strategy. Let T be counterclockwise rotation by x and S counterclockwise rotation by y (both in \mathbb{R}^2). Find the standard matrix for $S \circ T$ in two ways: (i) by multiplying the standard matrices for S and T, and (ii) by observing that $S \circ T$ is rotation by x + y. The matrices obtained in (i) and (ii) must be equal, so their entries must be equal.

- 3. Use the trigonometric identities (1) to find formulas for $\cos(2x)$ and $\sin(2x)$.
- 4. In an earlier homework problem, you considered the linear transformation $T: P_2 \to \mathbb{R}^2$ defined by $T(p(x)) = \begin{bmatrix} p(-1) \\ p(1) \end{bmatrix}$. Determine whether T is onto. **Prove** your answer.
- 5. Construct the following:
 - (a) A matrix A such that the matrix transformation $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one but not onto.
 - (b) A matrix B such that the matrix transformation $T(\mathbf{x}) = B\mathbf{x}$ is onto but not one-to-one.

(c) A matrix C such that the matrix transformation $T(\mathbf{x}) = C\mathbf{x}$ is one-to-one and onto. Briefly explain why your given matrices satify the required properties.

- 6. (Optional) Let $T: V \to W$ be linear. A left inverse of T is a linear transformation $L: W \to V$ such that $L \circ T = I_V$, and a **right inverse** of T is a linear transformation $R: W \to V$ such that $T \circ R = I_W$.
 - (a) Prove that if T has a left inverse, then T is one-to-one.
 - (b) Prove that if T has a right inverse, then T is onto.
 - (c) Prove that if T has a left inverse L and a right inverse R, then T is an isomorphism and L = R.
 - (d) Give an example of a linear transformation T that has a left inverse but not a right inverse.
 - (e) Give an example of a linear transformation T that has a right inverse but not a left inverse.

- 7. §8.4, #8.
- 8. Let $T: V \to W$ be linear, and let $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ be a basis for V and $\mathcal{B}' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ a basis for W. Suppose that $T(\mathbf{u}_1) = 3\mathbf{w}_1 + 5\mathbf{w}_2 - 7\mathbf{w}_3$ and $T(\mathbf{u}_2) = 2\mathbf{w}_1 + 4\mathbf{w}_3$.
 - (a) Find $[T]_{\mathcal{B}',\mathcal{B}}$.
 - (b) If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 7\\-2 \end{bmatrix}$, then what is $[T(\mathbf{x})]_{\mathcal{B}'}$?
- 9. Let \mathcal{B} be the standard basis of \mathbb{R}^2 , let \mathcal{C} be the basis of \mathbb{R}^3 consisting of the three vectors $\mathbf{u}_1 = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$, and let \mathcal{D} be the standard basis of \mathbb{R}^3 . Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T(\begin{bmatrix} a\\ b \end{bmatrix}) = a\mathbf{u}_1 + b\mathbf{u}_2 + (a+b)\mathbf{u}_3$. Find $[T]_{\mathcal{C},\mathcal{B}}$ and $[T]_{\mathcal{D},\mathcal{B}}$.