Homework 13: Standard Matrices, Compositions

Assignments should be **stapled** and written clearly and legibly.

- 1. Find the standard matrix for each of the following linear transformations.
 - (a) $S : \mathbb{R}^2 \to \mathbb{R}^2$ given by rotating 2θ clockwise about the origin.
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by reflecting across the line y = -x.
 - (c) $R : \mathbb{R}^3 \to \mathbb{R}^3$ given by rotating 180° about the line passing through points (-1, 0, -1) and (1, 0, 1).
- 2. Find the result of rotating the vector $\begin{bmatrix} 2\\4\\7 \end{bmatrix}$ by 180° about the line through the points (-1, 0, -1) and (1, 0, 1).
- 3. §1.3, #5(a), (b)
- 4. §4.10, #9, 11.
- 5. In \mathbb{R}^3 , let T be counterclockwise rotation by θ about the z-axis, and let S be counterclockwise rotation by ψ about the y-axis. (Here counterclockwise means as viewed from the positive axis.) Let R be counterclockwise rotation by θ about the z-axis followed by counterclockwise rotation by ψ in \mathbb{R}^3 about the y-axis. Find standard matrices for T, S, and R.

Hint: The standard matrix for R is obtained by multiplying the other two matrices (in the correct order).

- 6. Give an isomorphism $T: M_{2,3} \to \mathbb{R}^6$. No justification required.
- 7. Suppose that there exists a linear transformation from V onto W, where both V and W are finite-dimensional vector spaces. Is it possible for the dimension of W to be greater than the dimension of V? Justify your answer.
- 8. (Optional) Give an example of a transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which is bijective but is not an isomorphism.