Homework 11: One-to-One, Onto

Assignments should be **stapled** and written clearly and legibly.

- 1. §8.2, #1(c), 6, 7, 19(a)(c). Make sure to justify your answer to the question asked in Exercise 7.
- 2. Let $T: V \to W$ be linear transformation, and let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be linearly independent in V.
 - (a) Prove that if T is one-to-one, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ is linearly independent in W.

Hint. Begin the proof as follows:

"Suppose $c_1T(\mathbf{v}_1) + \cdots + c_pT(\mathbf{v}_p) = \mathbf{0}$. I must show that $c_1 = \cdots = c_p = 0$."

- (b) Give an example showing that if T is not one-to-one, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ need not be linearly independent in W.
- 3. Let $T: V \to W$ be a linear transformation, with dim V = n, dim W = m. Prove the following:
 - (a) $\dim(R(T)) \le n$.
 - (b) $\dim(R(T)) = n$ if and only if T is one-to-one.
 - (c) $\dim(R(T)) = m$ if and only if T is onto.
- 4. (GRE Mathematics Subject Test) Let V be the vector space of all 2×3 matrices, and let W be the vector space of all 4×1 column vectors. If T is a linear transformation from V <u>onto</u> W, what is the dimension of the subspace $\{\mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0}\}$? (Circle the correct answer and explain your reasoning.)
 - (A) 2 (B) 3 (C) 4 (D) 5 (E) 6