Homework 10: Kernel, Range

Assignments should be **stapled** and written clearly and legibly. Problems 4, 5, and 6 are optional.

- 1. \$8.1, #10, 11, 24.
- 2. Let V and W be vector spaces, and let $T: V \to W$ be linear. Prove that if $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ spans V, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ spans R(T).
- 3. Let A be an $m \times n$ matrix. Prove that $\text{Nul} A = \{0\}$ if and only if the columns of A are linearly independent.
- 4. Let $T: V \to W$ be a linear transformation. Let w be an element of W, and let v_0 be an element of V which T maps to w. Prove that the set of all vectors which T maps to w is equal to $\{v_0 + u : u \in \ker T\}$. (Note that this is not, in general, a subspace of V – why not?)
- 5. (Differential Equations) Let $V = W = C^{\infty}(-\infty, \infty)$ be the vector space of infinitely differentiable functions. Let $T: V \to W$ be the linear transformation

$$T(f) = a_m f^{(m)} + a_{m-1} f^{(m-1)} + \dots + a_1 f,$$

where $f^{(i)}$ denotes the *i*-th derivative of f, and $a_m, a_{m-1}, \ldots, a_1$ are constants.

- (a) Recall that ker $T = \{f \in V : T(f) = 0\}$. In terms of differential equations, what does ker T represent?
- (b) Let $g \in W$, and let $H = \{h \in V : T(h) = g\}$. In terms of differential equations, what does H represent?
- (c) Let h_0 be any element of H. Use Problem 3 to prove that $H = \{h_0 + f : f \in \ker T\}$.
- 6. Let $T: V \to V$ be a linear transformation, and let \mathbf{x} be a vector in V. Suppose that, for some positive integer $m, T^{m-1}(\mathbf{x}) \neq \mathbf{0}$ but $T^m(\mathbf{x}) = \mathbf{0}$. Prove that $\{\mathbf{x}, T(\mathbf{x}), \ldots, T^{m-1}(\mathbf{x})\}$ is linearly independent.