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Unit 1: Vector Space, Subspace, Linear Combination, Span, Linear Inde-
pendence, Basis

Definition 1.1: Binary and Scalar Operations

(i) A binary operation on a set V is a rule which, for any two elements u and v in V ,
produces a third element in V . (Produced element sometimes denoted by u+ v, u⊕ v,
u · v, or uv.)

(ii) A scalar operation on a set V is a rule which, for any real number k and any element
u in V , produces an element of V . (Produced element sometimes denoted by k · v or
kv.)

Definition 1.2: Vector Space

A vector space consists of the following:

• A set V

• A binary opertion on V (called addition, denoted +)

• A scalar operation on V (called scalar multiplication, denoted ·)

such that for all u,v,w in V and k,m in R,

(i) u+v = v+u

(ii) (u+v)+w = u+(v+w)

(iii) There exists an element in V , denoted by 0, such that 0+u = u for every u in V .

(iv) For every u in V , there exists an element −u in V such that u+(−u) = 0.

(v) k · (u+v) = k ·u+ k ·v

(vi) (k+m) ·u = k ·u+m ·v

(vii) k · (m ·u) = (km) ·u

(viii) 1 ·u = u
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Definition 1.3: Additive Identity and Additive Inverse

In Definition 1.2 of a vector space above, 0 is called the additive identity or the zero vector
of V , and for u in V , −u is called the additive inverse of u.

Definition 1.4: Subspace

A subspace of a vector space V is a subset W of V which is itself a vector space.

Definition 1.5: Linear Combination

A linear combination of v1, . . . ,vr is a vector of the form k1v1+ · · ·+krvr, where k1, . . . ,kr
are scalars.

Definition 1.6: Span

The span of v1, . . . ,vr, denoted span{v1, . . . ,vr}, is the set of all linear combinations of
v1, . . . ,vr.

Definition 1.7: Linearly independent

Let V be a vector space and let v1, . . . ,vr be vectors in V . Then {v1, . . . ,vr} is linearly
independent if k1v1 + · · ·+ krvr = 0 implies k1 = · · ·= kr = 0.

Definition 1.8: Basis

A basis for a vector space V is a set of vectors B = {v1, . . . ,vn} such that

(i) span{v1, . . . ,vn}=V , and

(ii) {v1, . . . ,vn} is linearly independent.
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Definition 1.9: Coordinates

Let B = {v1, . . . ,vn} be a basis of a vector space V , and let u be a vector in V . Then
u = c1v1 + · · ·+ cnvn for unique scalars c1, . . . ,cn, by Theorem 1.6. The scalars c1, . . . ,cn
are called the coordinates of u relative to B, and the vectorc1

...
cn

 ,
denoted by [u]B, is called the coordinate vector of u relative to B.

Definition 1.10: Dimension

The dimension of a nonzero vector space V is the number of vectors in a basis for V .

Definition 1.11: Product of Matrix and Vector

Let A = [v1 · · ·vn] be an m×n matrix with column vectors v1, . . . ,vn, and let x =

x1
...

xn

 be a

vector in Rn. Then Ax = x1v1 + · · ·+ xnvn.

Definition 1.12: Nullspace

Let A be an m×n matrix. The nullspace of A, denoted by NulA, is the set of all solutions
to Ax = 0.

Definition 1.13: Column Space

Let A be an m× n matrix. The column space of A, denoted by ColA, is the span of the
column vectors of A.

Theorem 1.1

Let V be a vector space, u a vector in V , and k a scalar. Then

(i) 0u = 0

(ii) k0 = 0

(iii) (−1)u =−u
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Theorem 1.2

Let V be a vector space and let W be a subset of V . Then W is a subspace of V if:

(i) for every u and v in W , u+v is in W (i.e., W is closed under vector addition); and

(ii) for every u in W and scalar k, ku is in W (i.e., W is closed under scalar multiplication);
and

(iii) the zero vector of V lies in W .

Theorem 1.3

Let V be a vector space and let v1, . . . ,vr be vectors in V . Then span{v1, . . . ,vr} is a subspace
of V .

Theorem 1.4

A set {v1, . . . ,vr} of two or more vectors is linearly dependent if and only if at least one of
the vectors is a linear combination of the others.

Theorem 1.5

Let B = {v1, . . . ,vn} be a basis for a vector space V .

(i) If any vector of V is added to B, then B is no longer linearly independent.

(ii) If any vector is removed from B, then B no longer spans V .

Theorem 1.6

Let B = {v1, . . .vn} be a basis of a vector space V . Then every u in V can be written in
exactly one way as a linear combination of v1, . . . ,vn, that is, can be expressed as

u = c1v1 + · · ·cnvn,

for unique scalars c1, . . . ,cn.

Theorem 1.7

All bases of a vector space V have the same number of elements.
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Theorem 1.8

In Rn, the following have the same solutions:

(i) The vector equation x1v1 + · · ·+ xpvp = u.

(ii) The linear system of equations with augmented matrix [v1 · · ·vp | u].

(iii) The matrix equation [v1 · · ·vp]x = u.

Lemma 1.1

Let A be an m×n matrix, let u,v be vectors in Rn, and let c be a scalar. Then

(i) A(u+v) = Au+Av, and

(ii) A(cu) = c(Au).

Theorem 1.9

Let A be an m×n matrix. Then NulA is a subspace of Rn.

Theorem 1.10

Let A be a matrix with n columns. Then dim(NulA)+dim(ColA) = n.
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Unit 2: Introduction to Linear Transformations

Definition 2.1: Linear Transformation

Let V and W be vector spaces. A transformation (or mapping) T : V →W is linear if it
satisfies the following conditions:

(i) For every u,v in V , T (u+v) = T (u)+T (v).

(ii) For every u in V and scalar c, T (cu) = cT (u).

Theorem 2.1

Let T : V →W be linear. Then

(i) T (0) = 0.

(ii) T (c1v1+ · · ·+cpvp) = c1T (v1)+ · · ·+cpT (vp), for any scalars c1, . . . ,cp and vectors
v1, . . . ,vp in V .

Definition 2.2: Matrix Transformation

A matrix transformation is a mapping T : Rn→ Rm given by T (x) = Ax, for some fixed
m×n matrix A.

Theorem 2.2

A matrix transformation is linear.

Definition 2.3: Kernel and Range

Let T : V →W be linear. Then

(i) The kernel of T , denoted ker(T ), is the set of vectors in V which T maps to 0.

(ii) The range of T , denoted R(T ), is the set of vectors in W which have at least one
vector in V mapping to them.

Theorem 2.3

Let T : V →W be linear. Then ker(T ) is a subspace of V and R(T ) is a subspace of W .
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Theorem 2.4

Let A be an m× n matrix, and let T : Rn → Rm be the matrix transformation T (x) = Ax.
Then ker(T ) = NulA and R(T ) = ColA.

Theorem 2.5

Let T : V →W be linear. Then dim(kerT )+dim(R(T )) = dimV .

Theorem 2.6

Let T : V →W be linear. Then T is one-to-one if and only if kerT = {0}.

Theorem 2.7

Let W be a subspace of V . If dimW = dimV , then W =V .

Theorem 2.8

Let T : V →W be linear, and suppose that dimV = dimW . Then T is one-to-one if and only
if T is onto.

Definition 2.4: Composition

Let T : U→V and S : V →W be linear transformations. Then the composition of S with T ,
denoted S◦T , is the map from U to W defined by (S◦T )(u) = S(T (u)) for u ∈U .

Theorem 2.9

Let T :U→V and S :V →W be linear transformations. Then the composition S◦T :U→W
is a linear transformation.

Definition 2.5: Identity Transformation

For any vector space V , the identity transformation I : V → V is defined by I(v) = v for
all v in V .

Theorem 2.10

Let T : V →W be a linear transformation. Then T ◦ I = I ◦T = T .
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Definition 2.6: Inverse Transformation

Let T : V →W be one-to-one. Then there exists an inverse transformation T−1 : R(T )→V
such that T−1(T (v)) = v for all v in V .

Theorem 2.11

Let T : V →W be one-to-one. Then T−1 ◦T = I.

Definition 2.7: Isomorphism

An isomorphism is a bijective linear transformation.

Definition 2.8: Isomorphic

If T : V →W is an isomorphism, then V and W are said to isomorphic.

Theorem 2.12

If T : V →W is an isomorphism, then dimV = dimW .

Theorem 2.13

Suppose that V is a vector space and B = {v1, . . . ,vn} is a basis for V . Then the mapping
T : V → Rn given by T (u) = [u]B is an isomorphism.
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Unit 3: The Matrix of a Linear Transformation

Theorem 3.1

Let T : Rn→ Rm be a linear transformation. Then for x in Rn, T (x) = Ax, where A is the
matrix [T (e1) · · ·T (en)]. The matrix A = [T (e1) · · ·T (en)] is called the standard matrix for
T .

Theorem 3.2

Let T : Rn→Rm be a mapping. Then T is a linear transformation if and only if T is a matrix
transformation.

Theorem 3.3

Suppose that the standard matrix for S is A and the standard matrix for T is B. Then the
standard matrix for S◦T is AB.

Definition 3.1: Invertible and Inverse

Let A be an n× n matrix. Then A is said to be invertible if there exists an n× n matrix B
such that AB = BA = In. In this case, B is called the inverse of A, and we write B = A−1.

Theorem 3.4

Let T : Rn→ Rn be a linear transformation, and let A be the standard matrix for T . Then T
is an isomorphism if and only if A is invertible. In this case, the standard matrix for T−1 is
A−1.

Theorem 3.5

Let A be an n×n matrix. Then A is invertible if and only if A can be row reduced to In.

Theorem 3.6

Let A be an n× n matrix, and let b be a vector in Rn. If A is invertible, then Ax = b has a
unique solution, namely, x = A−1b.
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Theorem 3.7

Let A be an n× n matrix, and let T : Rn→ Rn be given by T (x) = Ax. The following are
equivalent:

(i) T is an isomorphism.

(ii) T is one-to-one.

(iii) T is onto.

(iv) kerT = {0}.

(v) R(T ) = Rn.

(vi) A is invertible.

(vii) A row-reduces to In.

(viii) NulA = {0}.

(ix) The columns of A are linearly independent.

(x) ColA = Rn.

(xi) The columns of A span Rn.

Theorem 3.8

Let T : V →W be linear. Let B = {u1, . . . ,un} be a basis for V and B′ = {w1, . . . ,wm}
a basis for W . Then there exists a matrix [T ]B′,B such that for every v in V , [T (v)]B′ =
[T ]B′,B · [v]B.

Theorem 3.9

Let T : V →W be linear. Let B = {u1, . . . ,un} be a basis for V and B′ = {w1, . . . ,wm} a
basis for W . Then

[T ]B′,B =

[
[T (u1)]B′ · · · [T (un)]B′

]

Theorem 3.10

Let T : U → V and S : V →W be linear. Let B,B′,B′′ be bases for vector spaces U,V,W
respectively. Then [S◦T ]B′′,B = [S]B′′,B′ · [T ]B′,B.
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Definition 3.2: Change of Coordinates Matrix

Let B,B′ be bases for a vector space V . Then [I]B′,B is called the change of coordinates
matrix from B to B′ coordinates.

Theorem 3.11

Let B,B′ be bases for a vector space V . Then

(i) For any v in V , [v]B′ = [I]B′,B · [v]B.

(ii) [I]B,B = In, where n = dimV .

(iii) [I]B′,B is invertible.

(iv) ([I]B′,B)−1 = [I]B,B′ .

Notation 3.1

[T ]B,B is often denoted by just [T ]B.

Theorem 3.12

[Change of Basis Formula] Let T : V → V be a linear operator. Let B,B′ be bases for V .
Then

[T ]B′ = [I]B′,B · [T ]B · [I]B,B′
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Unit 4: Inner Product Spaces

Definition 4.1: Inner Product Space

Let V be a vector space. An inner product on V is a rule which assigns to each pair of
vectors u,v in V a scalar, denoted 〈u,v〉, such that for all u,v,w in V and all scalars c,

(i) 〈u,v〉= 〈v,u〉.

(ii) 〈u+v,w〉= 〈u,w〉+ 〈v,w〉.

(iii) 〈cu,v〉= c〈u,v〉.

(iv) 〈v,v〉 ≥ 0, with equality if and only if v = 0.

A vector space with an inner product is called an inner product space.

Definition 4.2: Length, Distance, Unit Vector

Let V be an inner product space.

(i) For v in V , the norm (or length) of v is defined by ‖v‖=
√
〈v,v〉.

(ii) For u,v in V , the distance between u and v is d(u,v) = ‖u−v‖.

(iii) A unit vector is a vector of norm 1.

(iv) The set of all unit vectors in V is called the unit circle of V .

Definition 4.3: Orthogonal (Two Vectors)

Let V be an inner product space. Vectors u and v in V are orthogonal if 〈u,v〉= 0.

Definition 4.4: Orthogonal and Orthonormal (Set of Vectors)

A set S of two or more vectors in an inner product space is said to be orthogonal if every
two distinct vectors in S are orthogonal. The set S is orthonormal if S is orthogonal and
consists entirely of unit vectors.
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Definition 4.5: Orthogonal Complement

Let V be an inner product space and let W be a subspace of V . The orthogonal complement
of W , denoted W⊥, is the set of vectors of V which are orthogonal to all vectors in W .

Theorem 4.1

Let V be an inner product space. Then

(i) 〈v,0〉= 0 and 〈0,v〉= 0, for every v in V .

(ii) 〈c1v1+ · · ·+cnvn,w〉= c1〈v1,w〉+ · · ·+cn〈vn,w〉, for all scalars c1, . . . ,cn and vectors
v1, . . . ,vn,w.

Theorem 4.2

Let V be an inner product space. Let u,v,w be in V and let c be a scalar. Then

(i) 〈u,v+w〉= 〈u,v〉+ 〈u,w〉.

(ii) 〈u,cv〉= c〈u,v〉.

Theorem 4.3

Let V be an inner product space. Let v be in V and let c be a scalar. Then

(i) ‖cv‖= |c|‖v‖.

(ii)
v
‖v‖

is a unit vector, if v 6= 0.

Theorem 4.4

If S = {u1, . . . ,un} is an orthogonal set of nonzero vectors in an inner product space, then S
is linearly independent.

Theorem 4.5

Let V be an inner product space, and let B = {v1, . . . ,vn} be an orthogonal basis for V . Then
for u in V , u = c1v1 + · · ·+ cnvn, where

ci =
〈u,vi〉
‖vi‖2 , for i = 1, . . . ,n.
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Theorem 4.6

Let W be a subspace of an inner product space V . Then

(i) W⊥ is a subspace of V ; and

(ii) W ∩W⊥ = {0}.

Theorem 4.7

Let u,v be vectors in an inner product space V with v 6= 0. Let L = span{v}, a one-
dimensional subspace of V . The we can uniquely write u = y+ z, with y in L and z in
L⊥. Explicitly,

y =
〈u,v〉
‖v‖2 v, and z = u−y.

The vector y is called the orthogonal projection of u onto L and denoted by projL u or
projv u.

Theorem 4.8

Let u be a nonzero vector in an inner product space V , and let W be a finite dimensional
subspace of V . Then we can uniquely write u = y+ z, with y in W and z in W⊥. The vector
y is called the orthogonal projection of u onto W and denoted by projW u, and z is called
the component of u orthogonal to W .
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Unit 5: Determinants

Theorem 5.1

Let A be a square matrix.

(i) If two rows of A are interchanged to produce a matrix B, then detB =−detA.

(ii) If one row of A is multiplied by a constant k to produce B, then detB = k detA.

(iii) If a multiple of one row of A is added to another row to produce B, then detB = detA.

Theorem 5.2

Let A be a square matrix. Then A is invertible if and only if detA 6= 0.
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Unit 6: Eigenvectors and Eigenvalues

Definition 6.1: Eigenvector, Eigenvalue

Let A be an n×n matrix. An eigenvector of A is a nonzero vector x such that Ax = λx for
some scalar λ . The scalar λ is called the eigenvalue corresponding to v.

Theorem 6.1

Let A be an n×n matrix. Then λ is an eigenvalue of A if and only if det(λ In−A) = 0.

Definition 6.2: Characteristic Polynomial

Let A be an n×n matrix. The characteristic polynomial of A is det(λ In−A).

Theorem 6.2

Let A be an n× n matrix, and let λ be an eigenvalue of A. Then x is an eigenvector of A
corresponding to λ if and only if x 6= 0 and x is in Nul(λ In−A).

Definition 6.3: Eigenspace

Let A be an n× n matrix and let λ be an eigenvalue of A. Then Nul(λ In−A) is called the
eigenspace of A corresponding to λ (or sometimes just the λ -eigenspace of A).

Theorem 6.3

Let A be an n× n matrix, and let T : Rn → Rn be the matrix transformation T (x) = Ax.
Suppose that B = {v1, . . . ,vn} is a basis for Rn consisting of eigenvectors for A (i.e., an
eigenbasis for A). Suppose that the eigenvalues of v1, . . . ,vn are λ1, . . . ,λn. Then [T ]B is the
following diagonal matrix:

[T ]B =


λ1

λ2
. . .

λn


If B′ is the standard basis for Rn, then by the change of basis theorem, [T ]B′ =
[I]B′,B[T ]B[I]B,B′ . This is often written A = PDP−1.
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Definition 6.4: Diagonalizable

An n× n matrix is said to be diagonalizable if it has an eigenbasis, i.e., a basis for Rn

consisting of eigenvectors for A.

Theorem 6.4

Let A be an n× n matrix. If λ1, . . . ,λk are distinct eigenvalues of A, and if v1, . . . ,vk are
corresponding eigenvectors, then {v1, . . . ,vk} is linearly independent.

Definition 6.5: Algebraic and Geometric Multiplicities

Let λ be an eigenvalue of A.

(i) The algebraic multiplicity of λ is the multiplicity of A as a zero of the characteristic
polynomial of A.

(ii) The geometric multiplicity of λ is the dimension of the λ eigenspace of A.

Theorem 6.5

Let A be an n×n matrix, and let λ1, . . . ,λk be the distinct eigenvalues of A.

(i) The geometric multiplicity of any eigenvalue is less than or equal to its algebraic
multiplicity.

(ii) A is diagonalizable if and only if the geometric multiplicity of each eigenvalue is equal
to its algebraic multplicity.
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