DEPARTMENT OF MATHEMATICS AND PHYSICS UNIVERSITY OF WISCONSIN - PARKSIDE

DEFINITIONS & THEOREMS

STUDY GUIDE FOR A COURSE IN LINEAR ALGEBRA

COURSE: SEMESTER: MATH 301 FALL 2024

SEPTEMBER 2, 2024

Contents

Victor Kreiman, September 2, 2024

Unit 1: Vector Space, Subspace, Linear Combination, Span, Linear Independence, Basis

Definition 1.1: Binary and Scalar Operations

- (i) A **binary operation** on a set *V* is a rule which, for any two elements *u* and *v* in *V*, produces a third element in *V*. (Produced element sometimes denoted by $u + v$, $u \oplus v$, $u \cdot v$, or uv .)
- (ii) A **scalar operation** on a set V is a rule which, for any real number k and any element *u* in *V*, produces an element of *V*. (Produced element sometimes denoted by $k \cdot v$ or *kv*.)

Definition 1.2: Vector Space

A vector space consists of the following:

• A set *V*

- A binary opertion on *V* (called addition, denoted $+)$
- A scalar operation on *V* (called scalar multiplication, denoted ·)

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in *V* and *k*, *m* in \mathbb{R} ,

(i) $u + v = v + u$

(ii) $({\bf u} + {\bf v}) + {\bf w} = {\bf u} + ({\bf v} + {\bf w})$

(iii) There exists an element in *V*, denoted by **0**, such that $0 + u = u$ for every u in *V*.

(iv) For every **u** in *V*, there exists an element $-\mathbf{u}$ in *V* such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

$$
(v) k \cdot (\mathbf{u} + \mathbf{v}) = k \cdot \mathbf{u} + k \cdot \mathbf{v}
$$

- (vi) $(k+m) \cdot \mathbf{u} = k \cdot \mathbf{u} + m \cdot \mathbf{v}$
- (vii) $k \cdot (m \cdot \mathbf{u}) = (km) \cdot \mathbf{u}$
- (viii) $1 \cdot u = u$

Definition 1.3: Additive Identity and Additive Inverse

In Definition 1.2 of a vector space above, θ is called the **additive identity** or the **zero vector** of *V*, and for **u** in *V*, $-\mathbf{u}$ is called the **additive inverse** of **u**.

Definition 1.4: Subspace

A subspace of a vector space *V* is a subset *W* of *V* which is itself a vector space.

Definition 1.5: Linear Combination

A linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_r$ is a vector of the form $k_1\mathbf{v}_1 + \cdots + k_r\mathbf{v}_r$, where k_1, \ldots, k_r are scalars.

Definition 1.6: Span

The span of v_1, \ldots, v_r , denoted span $\{v_1, \ldots, v_r\}$, is the set of all linear combinations of $\mathbf{v}_1,\ldots,\mathbf{v}_r.$

Definition 1.7: Linearly independent

Let *V* be a vector space and let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be vectors in *V*. Then $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is **linearly independent** if k_1 **v**₁ + \cdots + k_r **v**_{*r*} = **0** implies k_1 = \cdots = k_r = 0.

Definition 1.8: Basis

A **basis** for a vector space *V* is a set of vectors $\mathcal{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ such that

- (i) $\text{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\} = V$, and
- (ii) $\{v_1, \ldots, v_n\}$ is linearly independent.

Definition 1.9: Coordinates

Let $\mathscr{B} = {\bf v}_1, \dots, {\bf v}_n$ be a basis of a vector space *V*, and let **u** be a vector in *V*. Then $\mathbf{u} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ for unique scalars c_1, \dots, c_n , by Theorem 1.6. The scalars c_1, \dots, c_n are called the **coordinates** of **u** relative to \mathcal{B} , and the vector

denoted by $[\mathbf{u}]_{\mathscr{B}}$, is called the **coordinate vector** of **u** relative to \mathscr{B} .

Definition 1.10: Dimension

The dimension of a nonzero vector space *V* is the number of vectors in a basis for *V*.

Definition 1.11: Product of Matrix and Vector

Let
$$
A = [\mathbf{v}_1 \cdots \mathbf{v}_n]
$$
 be an $m \times n$ matrix with column vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, and let $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ be a

vector in \mathbb{R}^n . Then $A\mathbf{x} = x_1\mathbf{v}_1 + \cdots + x_n\mathbf{v}_n$.

Definition 1.12: Nullspace

Let *A* be an $m \times n$ matrix. The **nullspace** of *A*, denoted by Nul*A*, is the set of all solutions to $A\mathbf{x} = \mathbf{0}$.

Definition 1.13: Column Space

Let *A* be an $m \times n$ matrix. The **column space** of *A*, denoted by Col*A*, is the span of the column vectors of *A*.

Theorem 1.1

Let *V* be a vector space, u a vector in *V*, and *k* a scalar. Then

- (i) $0u = 0$
- (ii) $k0 = 0$
- (iii) (-1) **u** = −**u**

Let *V* be a vector space and let *W* be a subset of *V*. Then *W* is a subspace of *V* if:

- (i) for every **u** and **v** in *W*, $\mathbf{u} + \mathbf{v}$ is in *W* (i.e., *W* is closed under vector addition); and
- (ii) for every \bf{u} in *W* and scalar *k*, *k***u** is in *W* (i.e., *W* is closed under scalar multiplication); and
- (iii) the zero vector of *V* lies in *W*.

Theorem 1.3

Let *V* be a vector space and let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be vectors in *V*. Then span $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ is a subspace of *V*.

Theorem 1.4

A set $\{v_1, \ldots, v_r\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors is a linear combination of the others.

Theorem 1.5

Let $\mathscr{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis for a vector space *V*.

- (i) If any vector of *V* is added to \mathcal{B} , then \mathcal{B} is no longer linearly independent.
- (ii) If any vector is removed from \mathcal{B} , then \mathcal{B} no longer spans *V*.

Theorem 1.6

Let $\mathscr{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be a basis of a vector space *V*. Then every **u** in *V* can be written in exactly one way as a linear combination of v_1, \ldots, v_n , that is, can be expressed as

$$
\mathbf{u}=c_1\mathbf{v}_1+\cdots c_n\mathbf{v}_n,
$$

for unique scalars c_1, \ldots, c_n .

Theorem 1.7

All bases of a vector space *V* have the same number of elements.

Theorem 1.8

In \mathbb{R}^n , the following have the same solutions:

- (i) The vector equation $x_1\mathbf{v}_1 + \cdots + x_p\mathbf{v}_p = \mathbf{u}$.
- (ii) The linear system of equations with augmented matrix $[\mathbf{v}_1 \cdots \mathbf{v}_p \mid \mathbf{u}]$.
- (iii) The matrix equation $[\mathbf{v}_1 \cdots \mathbf{v}_p] \mathbf{x} = \mathbf{u}$.

Lemma 1.1

Let *A* be an $m \times n$ matrix, let **u**, **v** be vectors in \mathbb{R}^n , and let *c* be a scalar. Then

(i)
$$
A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}
$$
, and

(ii) $A(c\mathbf{u}) = c(A\mathbf{u}).$

Theorem 1.9

Let *A* be an $m \times n$ matrix. Then Nul*A* is a subspace of \mathbb{R}^n .

Theorem 1.10

Let *A* be a matrix with *n* columns. Then $dim(NulA) + dim(ColA) = n$.

Unit 2: Introduction to Linear Transformations

Definition 2.1: Linear Transformation

Let *V* and *W* be vector spaces. A transformation (or mapping) $T: V \to W$ is **linear** if it satisfies the following conditions:

- (i) For every \mathbf{u}, \mathbf{v} in *V*, $T(\mathbf{u}+\mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$.
- (ii) For every **u** in *V* and scalar *c*, $T(c\mathbf{u}) = cT(\mathbf{u})$.

Theorem 2.1

Let $T: V \to W$ be linear. Then

- (i) $T(0) = 0$.
- (ii) $T(c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p) = c_1T(\mathbf{v}_1) + \cdots + c_pT(\mathbf{v}_p)$, for any scalars c_1, \ldots, c_p and vectors $\mathbf{v}_1,\ldots,\mathbf{v}_p$ in V .

Definition 2.2: Matrix Transformation

A **matrix transformation** is a mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) = A\mathbf{x}$, for some fixed $m \times n$ matrix *A*.

Theorem 2.2

A matrix transformation is linear.

Definition 2.3: Kernel and Range

Let $T: V \to W$ be linear. Then

- (i) The **kernel** of *T*, denoted $\text{ker}(T)$, is the set of vectors in *V* which *T* maps to **0**.
- (ii) The **range** of *T*, denoted $R(T)$, is the set of vectors in *W* which have at least one vector in *V* mapping to them.

Theorem 2.3

Let $T: V \to W$ be linear. Then ker(*T*) is a subspace of *V* and $R(T)$ is a subspace of *W*.

Theorem 2.4

Let *A* be an $m \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the matrix transformation $T(\mathbf{x}) = A\mathbf{x}$. Then $\ker(T) = \text{Nul}A$ and $R(T) = \text{Col}A$.

Theorem 2.5

Let $T: V \to W$ be linear. Then dim(ker T) + dim($R(T)$) = dim V .

Theorem 2.6

Let $T: V \to W$ be linear. Then *T* is one-to-one if and only if ker $T = \{0\}.$

Theorem 2.7

Let *W* be a subspace of *V*. If dim $W = \dim V$, then $W = V$.

Theorem 2.8

Let $T: V \to W$ be linear, and suppose that dim $V = \dim W$. Then *T* is one-to-one if and only if *T* is onto.

Definition 2.4: Composition

Let $T: U \to V$ and $S: V \to W$ be linear transformations. Then the **composition** of *S* with *T*, denoted $S \circ T$, is the map from *U* to *W* defined by $(S \circ T)(u) = S(T(u))$ for $u \in U$.

Theorem 2.9

Let $T: U \to V$ and $S: V \to W$ be linear transformations. Then the composition $S \circ T: U \to W$ is a linear transformation.

Definition 2.5: Identity Transformation

For any vector space *V*, the **identity transformation** $I: V \to V$ is defined by $I(v) = v$ for all v in *V*.

Theorem 2.10

Let $T: V \to W$ be a linear transformation. Then $T \circ I = I \circ T = T$.

Definition 2.6: Inverse Transformation

Let $T: V \to W$ be one-to-one. Then there exists an **inverse transformation** $T^{-1}: R(T) \to V$ such that $T^{-1}(T(v)) = v$ for all v in *V*.

Theorem 2.11

Let $T: V \to W$ be one-to-one. Then $T^{-1} \circ T = I$.

Definition 2.7: Isomorphism

An isomorphism is a bijective linear transformation.

Definition 2.8: Isomorphic

If $T: V \to W$ is an isomorphism, then *V* and *W* are said to **isomorphic**.

Theorem 2.12

If $T: V \to W$ is an isomorphism, then dim $V = \dim W$.

Theorem 2.13

Suppose that *V* is a vector space and $B = {\bf{v}_1, \ldots, \bf{v}_n}$ is a basis for *V*. Then the mapping $T: V \to \mathbb{R}^n$ given by $T(\mathbf{u}) = [\mathbf{u}]_B$ is an isomorphism.

Unit 3: The Matrix of a Linear Transformation

Theorem 3.1

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then for **x** in \mathbb{R}^n , $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix $[T(\mathbf{e}_1)\cdots T(\mathbf{e}_n)]$. The matrix $A = [T(\mathbf{e}_1)\cdots T(\mathbf{e}_n)]$ is called the **standard matrix** for *T*.

Theorem 3.2

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a mapping. Then *T* is a linear transformation if and only if *T* is a matrix transformation.

Theorem 3.3

Suppose that the standard matrix for *S* is *A* and the standard matrix for *T* is *B*. Then the standard matrix for $S \circ T$ is AB .

Definition 3.1: Invertible and Inverse

Let *A* be an $n \times n$ matrix. Then *A* is said to be **invertible** if there exists an $n \times n$ matrix *B* such that $AB = BA = I_n$. In this case, *B* is called the **inverse** of *A*, and we write $B = A^{-1}$.

Theorem 3.4

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and let A be the standard matrix for *T*. Then *T* is an isomorphism if and only if *A* is invertible. In this case, the standard matrix for T^{-1} is A^{-1} .

Theorem 3.5

Let *A* be an $n \times n$ matrix. Then *A* is invertible if and only if *A* can be row reduced to I_n .

Theorem 3.6

Let *A* be an $n \times n$ matrix, and let **b** be a vector in \mathbb{R}^n . If *A* is invertible, then A **x** = **b** has a unique solution, namely, $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 3.7

Let *A* be an $n \times n$ matrix, and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be given by $T(\mathbf{x}) = A\mathbf{x}$. The following are equivalent:

- (i) *T* is an isomorphism.
- (ii) *T* is one-to-one.
- (iii) T is onto.
- (iv) ker $T = \{0\}.$
- (v) $R(T) = \mathbb{R}^n$.
- (vi) *A* is invertible.
- (vii) *A* row-reduces to I_n .
- (viii) Nul $A = \{0\}.$
- (ix) The columns of *A* are linearly independent.
- (x) $\text{Col}A = \mathbb{R}^n$.
- (xi) The columns of *A* span \mathbb{R}^n .

Theorem 3.8

Let $T: V \to W$ be linear. Let $\mathcal{B} = {\mathbf{u}_1, \dots, \mathbf{u}_n}$ be a basis for *V* and $\mathcal{B}' = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ a basis for *W*. Then there exists a matrix $[T]_{\mathscr{B}',\mathscr{B}}$ such that for every **v** in *V*, $[T(v)]_{\mathscr{B}'} =$ $[T]_{\mathscr{B}',\mathscr{B}}\!\cdot\![\mathbf{v}]_{\mathscr{B}}.$

Theorem 3.9

Let $T: V \to W$ be linear. Let $\mathscr{B} = {\mathbf{u}_1, \ldots, \mathbf{u}_n}$ be a basis for *V* and $\mathscr{B}' = {\mathbf{w}_1, \ldots, \mathbf{w}_m}$ a basis for *W*. Then $[T]_{\mathscr{B}',\mathscr{B}} =$ $\sqrt{ }$ $[T(\mathbf{u}_1)]_{\mathscr{B}'}\cdots[T(\mathbf{u}_n)]_{\mathscr{B}'}$ 1

Theorem 3.10

Let $T: U \to V$ and $S: V \to W$ be linear. Let $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ be bases for vector spaces U, V, W respectively. Then $[S \circ T]_{\mathscr{B}'',\mathscr{B}} = [S]_{\mathscr{B}'',\mathscr{B}'} \cdot [T]_{\mathscr{B}',\mathscr{B}}.$

Definition 3.2: Change of Coordinates Matrix

Let $\mathscr{B}, \mathscr{B}'$ be bases for a vector space *V*. Then $[I]_{\mathscr{B}', \mathscr{B}}$ is called the **change of coordinates matrix** from \mathcal{B} to \mathcal{B}' coordinates.

Theorem 3.11

Let $\mathcal{B}, \mathcal{B}'$ be bases for a vector space *V*. Then

- (i) For any **v** in *V*, $[\mathbf{v}]_{\mathscr{B}} = [I]_{\mathscr{B}',\mathscr{B}} \cdot [\mathbf{v}]_{\mathscr{B}}$.
- (ii) $[I]_{\mathscr{B},\mathscr{B}} = I_n$, where $n = \dim V$.
- (iii) $[I]_{\mathscr{B}',\mathscr{B}}$ is invertible.
- (iv) $([I]_{\mathscr{B}',\mathscr{B}})^{-1}=[I]_{\mathscr{B},\mathscr{B}'}$.

Notation 3.1

 $[T]_{\mathscr{B},\mathscr{B}}$ is often denoted by just $[T]_{\mathscr{B}}$.

Theorem 3.12

[Change of Basis Formula] Let $T: V \to V$ be a linear operator. Let $\mathcal{B}, \mathcal{B}'$ be bases for *V*. Then

$$
[T]_{\mathscr{B}'}=[I]_{\mathscr{B}',\mathscr{B}}\cdot [T]_{\mathscr{B}}\cdot [I]_{\mathscr{B},\mathscr{B}'}
$$

Unit 4: Inner Product Spaces

Definition 4.1: Inner Product Space

Let V be a vector space. An **inner product** on V is a rule which assigns to each pair of vectors **u**, **v** in *V* a scalar, denoted \langle **u**,**v** \rangle , such that for all **u**,**v**, **w** in *V* and all scalars *c*,

- (i) $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- (ii) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle.$
- (iii) $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$.
- (iv) $\langle v, v \rangle \ge 0$, with equality if and only if $v = 0$.

A vector space with an inner product is called an inner product space.

Definition 4.2: Length, Distance, Unit Vector

Let *V* be an inner product space.

- (i) For **v** in *V*, the **norm** (or **length**) of **v** is defined by $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$.
- (ii) For **u**, **v** in *V*, the **distance** between **u** and **v** is $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$.
- (iii) A unit vector is a vector of norm 1.
- (iv) The set of all unit vectors in *V* is called the unit circle of *V*.

Definition 4.3: Orthogonal (Two Vectors)

Let *V* be an inner product space. Vectors **u** and **v** in *V* are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Definition 4.4: Orthogonal and Orthonormal (Set of Vectors)

A set *S* of two or more vectors in an inner product space is said to be orthogonal if every two distinct vectors in *S* are orthogonal. The set *S* is orthonormal if *S* is orthogonal and consists entirely of unit vectors.

Definition 4.5: Orthogonal Complement

Let *V* be an inner product space and let *W* be a subspace of *V*. The orthogonal complement of *W*, denoted W^{\perp} , is the set of vectors of *V* which are orthogonal to all vectors in *W*.

Theorem 4.1

Let *V* be an inner product space. Then

- (i) $\langle \mathbf{v}, \mathbf{0} \rangle = 0$ and $\langle \mathbf{0}, \mathbf{v} \rangle = 0$, for every **v** in *V*.
- (ii) $\langle c_1v_1+\cdots+c_nv_n, w\rangle = c_1\langle v_1, w\rangle + \cdots + c_n\langle v_n, w\rangle$, for all scalars c_1, \ldots, c_n and vectors $\mathbf{v}_1,\ldots,\mathbf{v}_n,\mathbf{w}.$

Theorem 4.2

Let *V* be an inner product space. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be in *V* and let *c* be a scalar. Then

(i)
$$
\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle
$$
.

(ii)
$$
\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle
$$
.

Theorem 4.3

Let *V* be an inner product space. Let v be in *V* and let *c* be a scalar. Then

(i)
$$
||c\mathbf{v}|| = |c| ||\mathbf{v}||
$$
.

(ii)
$$
\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$
 is a unit vector, if $\mathbf{v} \neq \mathbf{0}$.

Theorem 4.4

If $S = {\mathbf{u}_1, \dots, \mathbf{u}_n}$ is an orthogonal set of nonzero vectors in an inner product space, then *S* is linearly independent.

Theorem 4.5

Let *V* be an inner product space, and let $B = \{v_1, \ldots, v_n\}$ be an orthogonal basis for *V*. Then for **u** in *V*, $\mathbf{u} = c_1 \mathbf{v}_1 + \cdots + c_n \mathbf{v}_n$, where

$$
c_i = \frac{\langle \mathbf{u}, \mathbf{v}_i \rangle}{\|\mathbf{v}_i\|^2}, \text{ for } i = 1, \dots, n.
$$

Theorem 4.6

Let *W* be a subspace of an inner product space *V*. Then

(i) W^{\perp} is a subspace of *V*; and

(ii) $W \cap W^{\perp} = \{0\}.$

Theorem 4.7

Let **u**, **v** be vectors in an inner product space *V* with $v \neq 0$. Let $L = \text{span}\{v\}$, a onedimensional subspace of *V*. The we can uniquely write $\mathbf{u} = \mathbf{y} + \mathbf{z}$, with **y** in *L* and **z** in L^{\perp} . Explicitly,

$$
\mathbf{y} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \mathbf{v}, \text{ and } \mathbf{z} = \mathbf{u} - \mathbf{y}.
$$

The vector **y** is called the **orthogonal projection of u onto** *L* and denoted by $proj_L$ **u** or $proj_{\mathbf{v}} \mathbf{u}$.

Theorem 4.8

Let \bf{u} be a nonzero vector in an inner product space *V*, and let *W* be a finite dimensional subspace of *V*. Then we can uniquely write $\mathbf{u} = \mathbf{y} + \mathbf{z}$, with \mathbf{y} in W and \mathbf{z} in W^{\perp} . The vector **y** is called the **orthogonal projection of u onto** *W* and denoted by $proj_W$ **u**, and **z** is called the component of u orthogonal to *W*.

Unit 5: Determinants

Theorem 5.1

Let *A* be a square matrix.

- (i) If two rows of *A* are interchanged to produce a matrix *B*, then $\det B = -\det A$.
- (ii) If one row of *A* is multiplied by a constant *k* to produce *B*, then det $B = k \cdot \text{det}A$.
- (iii) If a multiple of one row of *A* is added to another row to produce *B*, then $\det B = \det A$.

Theorem 5.2

Let *A* be a square matrix. Then *A* is invertible if and only if det $A \neq 0$.

Unit 6: Eigenvectors and Eigenvalues

Definition 6.1: Eigenvector, Eigenvalue

Let *A* be an $n \times n$ matrix. An **eigenvector** of *A* is a nonzero vector **x** such that A **x** = λ **x** for some scalar λ . The scalar λ is called the **eigenvalue** corresponding to **v**.

Theorem 6.1

Let *A* be an *n* × *n* matrix. Then λ is an eigenvalue of *A* if and only if det($\lambda I_n - A$) = 0.

Definition 6.2: Characteristic Polynomial

Let *A* be an *n* × *n* matrix. The **characteristic polynomial** of *A* is det($\lambda I_n - A$).

Theorem 6.2

Let *A* be an $n \times n$ matrix, and let λ be an eigenvalue of *A*. Then **x** is an eigenvector of *A* corresponding to λ if and only if $\mathbf{x} \neq \mathbf{0}$ and \mathbf{x} is in Nul($\lambda I_n - A$).

Definition 6.3: Eigenspace

Let *A* be an $n \times n$ matrix and let λ be an eigenvalue of *A*. Then Nul($\lambda I_n - A$) is called the eigenspace of *A* corresponding to λ (or sometimes just the λ -eigenspace of *A*).

Theorem 6.3

Let *A* be an $n \times n$ matrix, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the matrix transformation $T(\mathbf{x}) = A\mathbf{x}$. Suppose that $B = \{v_1, \ldots, v_n\}$ is a basis for \mathbb{R}^n consisting of eigenvectors for *A* (i.e., an eigenbasis for *A*). Suppose that the eigenvalues of $\mathbf{v}_1,\ldots,\mathbf{v}_n$ are $\lambda_1,\ldots,\lambda_n$. Then $[T]_B$ is the following diagonal matrix:

$$
[T]_B = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}
$$

If *B'* is the standard basis for \mathbb{R}^n , then by the change of basis theorem, $[T]_{B'} =$ $[I]_{B',B}[T]_{B}[I]_{B,B'}$. This is often written $A = PDP^{-1}$.

Definition 6.4: Diagonalizable

An $n \times n$ matrix is said to be **diagonalizable** if it has an eigenbasis, i.e., a basis for \mathbb{R}^n consisting of eigenvectors for *A*.

Theorem 6.4

Let *A* be an $n \times n$ matrix. If $\lambda_1, \ldots, \lambda_k$ are distinct eigenvalues of *A*, and if $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are corresponding eigenvectors, then $\{v_1, \ldots, v_k\}$ is linearly independent.

Definition 6.5: Algebraic and Geometric Multiplicities

Let λ be an eigenvalue of A .

- (i) The **algebraic multiplicity** of λ is the multiplicity of A as a zero of the characteristic polynomial of *A*.
- (ii) The **geometric multiplicity** of λ is the dimension of the λ eigenspace of A.

Theorem 6.5

Let *A* be an $n \times n$ matrix, and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of *A*.

- (i) The geometric multiplicity of any eigenvalue is less than or equal to its algebraic multiplicity.
- (ii) *A* is diagonalizable if and only if the geometric multiplicity of each eigenvalue is equal to its algebraic multplicity.