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Abstract. Let {B(Λm) | m ∈ Z/eZ} be the set of level one g(A
(1)
e−1)-crystals,

and consider the realization of B(Λm) using e-restricted partitions. We prove a
purely Young diagrammatic criterion for an element of B(Λ0)⊗d1 ⊗B(Λm)⊗d2

to be in the component B(d1Λ0 + d2Λm). As an application, we give a non-
recursive characterization of simple modules of the Hecke algebra of type B.
In the course of the proof, we also obtain a combinatorial description of the
second type of Kashiwara’s Demazure crystal in B(Λm).

1. Introduction

Let Hn(Q, q) be the Hecke algebra of type B defined over an algebraically closed
field F of characteristic `. The F -algebra Hn(Q, q) is generated by T0, . . . , Tn−1

subject to the quadratic relations (T0 − Q)(T0 + 1) = 0, (Ti − q)(Ti + 1) = 0, for
1 ≤ i < n, and the type B braid relations. Let q be a power of a prime p 6= `.
Motivated by a desire to generalize their famous work on the classification of simple
FGLn(q)-modules to other classical groups, Dipper and James initiated the study of
modular representations of Hecke algebras of type B, where q is an arbitrary element
in F . They proved a certain Morita equivalence theorem [DJ, Theorem 4.14] and
as a result, they classified simple Hn(Q, q)-modules in the case when −Q 6∈ qZ

[DJ, Theorem 5.6]. Suppose that q 6= 1 and −Q ∈ qZ. Then the classification
of simple Hn(Q, q)-modules was achieved in [A2, Theorem 4.2], which completed
the previous work [AM]. The classification is given for cyclotomic Hecke algebras
associated with G(r, 1, n), which is defined by replacing (T0 −Q)(T0 + 1) = 0 with
(T0−v1) · · · (T0−vr) = 0 in the above definition.1 We note here that Geck-Rouquier
theory provides us with another approach for classifying simple Hn(Q, q)-modules.2

The advantage of their approach is that it works for arbitrary finite Hecke algebras.
It is also worth mentioning that Jacon generalized the theory to cyclotomic Hecke
algebras associated with G(r, 1, n). See [Ge1] and [J1], [J2]. On the other hand,
control of actual modules is rather difficult in their approach, particularly in the
cyclotomic case.3 Hence, we have needed our approach in applications such as
determination of representation type, and we are pursuing our direction further.4

2000 Mathematics Subject Classification. Primary 20C08, Secondary 05E10.
1By the Morita equivalence theorem for cyclotomic Hecke algebras proven by Dipper and

Mathas [DM, Theorem 4.7], we may assume that vi ∈ qZ, for 1 ≤ i ≤ r.
2For the approach in [Gr], see [A3].
3Recently Geck has proved that finite Hecke algebras are cellular [Ge2]. Hence, they have

better control of actual modules than before for finite Hecke algebras.
4We hope that a better understanding of the two approaches will lead to the merging of both

theories.
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Let e be the multiplicative order of q 6= 1, g the Kac-Moody Lie algebra of type

A
(1)
e−1, {Λi | i ∈ Z/eZ} the fundamental weights. We realize the Kashiwara crystal

B(Λi) on the set of e-restricted partitions. Suppose that vi = qγi , for 1 ≤ i ≤ r.
Then, our classification theorem asserts that simple modules are parametrized by
the subset

B(Λγ1 + · · · + Λγr
) ⊂ B(Λγ1) ⊗ · · · ⊗B(Λγr

).

In particular, if −Q = qm then simple Hn(Q, q)-modules are parametrized by
B(Λ0 + Λm) ⊂ B(Λ0) ⊗ B(Λm). Further, when λ ⊗ µ ∈ B(Λ0 + Λm), we can
construct the corresponding simple module D(µ,λ) as follows. Let S(µ,λ) be the
Specht module for Hn(Q, q) constructed by Dipper, James and Murphy in [DJM].
S(µ,λ) is equipped with an invariant symmetric bilinear form. Then D(µ,λ) is the
module obtained from S(µ,λ) by factoring out the radical of the bilinear form.

A bipartition (µ, λ) is called Kleshchev if λ ⊗ µ ∈ B(Λ0 + Λm). The set of
Kleshchev bipartitions may be computed by applying Kashiwara operators to the
empty bipartition, but this does not give us an effective method of determining
whether a given bipartition is Kleshchev or not.

The first purpose of this article is to give a non-recursive characterization of
Kleshchev bipartitions. Our result is that λ ⊗ µ ∈ B(Λ0 + Λm) if and only if
roof(µ) ⊂ τm(base(λ)), where roof, base and τm are explicit operations on abacus
displays. The definition of roof and base requires repeated application of up and
down operations respectively, but roof and base are easily computable from a given
partition.5

The characterization of B(Λ0 + Λm) as a subset of B(Λ0) ⊗ B(Λm) is a purely
crystal theoretic question. Due to a result of Littelmann, this characterization can
be expressed in terms of his path model. Our strategy is to interpret his result
in terms of the combinatorics of partitions. In his result, the initial direction and
the final direction of a Lakshmibai-Seshadri path play an important role, and the
crucial step in proving our theorem is to find a Young diagrammatic interpretation
of these directions. Fortunately, the interpretation of the initial direction was al-
ready given in [KLMW1]. Here, we give the interpretation of the final direction.
This suffices for proving our result for m = 0. Combined with arguments which
interpret Littelmann’s condition for different dominant integral weights, we reach
our theorem.6

The second purpose of this article is to describe the crystal Bw(Λm) for w ∈W
in the same way that, in [KLMW1], By(Λm) is described for y ∈ W . The work is
motivated by standard monomial theory [LS], [L4]. In the Grassmannian case, see
[KL] for a self-contained presentation in the spirit of the classical work of Hodge
and Pedoe [H], [HP], and [KLMW2] for discussion of a similar approach for the
affine Grassmannian.

The initial and final directions of a Lakshmibai-Seshadri path are related to
the two types of Demazure crystals By(Λ) and Bw(Λ), for an integral dominant
weight Λ. We explain the relationship in detail in section 6. The result for the

5Using this result, the first author and Jacon have settled a conjecture in [DJM] affirmatively.
See [AJ].

6In the path model, an e-restricted partition is given by a sequence of e-cores and rational
numbers. We show that the Mullineux map in the modular representation theory of the symmetric
group and the Hecke algebra of type A is given by conjugation of the e-cores. See Proposition
5.21 and the accompanying remark.
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initial direction is due to Littelmann, and the result for the final direction is due
to Kashiwara and Sagaki, who proved the result independently. We think that
this self-contained explanation of the results benefits those who have an interest in
Littelmann’s path model.

The project started when the first author learned the idea of using Littelmann’s
result and the existence of [KLMW1] from Mark Shimozono. We are grateful to him.
We are also grateful to Kashiwara for his permission to include his proof of the above
mentioned result in this paper. Finally, the first author thanks Naito and Sagaki
for explaining to him basic facts about Littelmann’s path model, and Mathas and
Fayers for explaining to him their results for e = 2 and e = 3, which give a different
characterization of Kleshchev bipartitions without using Littelmann’s result. We
discuss their results in the last section.

2. Preliminaries

We assume that the reader is familiar with the theory of Kashiwara crystals. The
three books [HK], [Jo] and [K1] are standard references. Throughout the paper, we

always consider g(A
(1)
e−1)-crystals, for fixed e ≥ 2.

Let {Λm | m ∈ Z/eZ} be the set of fundamental weights. We denote by B(Λm)
the Kashiwara crystal associated with Λm. Recall that a partition λ is a sequence
of non-increasing integers

λ0 ≥ λ1 ≥ · · ·

which has only a finite number of nonzero elements. We denote λ0 by a(λ). When
λ`−1 > 0 and λ` = 0, we denote λ = (λ0, . . . , λ`−1) and denote ` by `(λ). A
partition is called e-restricted if 0 ≤ λi − λi+1 < e, for all i.

We shall recall the realization of B(Λm) in terms of e-restricted partitions. Let
λ be a partition. We color the nodes of λ with the e colors Z/eZ by the following
rule: let x(a, b) be the node located on the ath row and the bth column. Then
x(a, b) has color m − a + b + eZ. The number m − a + b is called the content of
x(a, b), and the color m− a+ b+ eZ is called the residue of x(a, b). Let λ ⊂ µ be
a pair of partitions such that the number of nodes differs by one. Suppose that the
residue of the node x = µ \ λ is i. Then we call x an addable i-node of λ and a
removable i-node of µ.

Let B be the set of e-restricted partitions. We color the nodes of λ ∈ B as above,
and define

wt(λ) = Λm −
∑

i∈Z/eZ

Ni(λ)αi

where Ni(λ) is the number of i-nodes in λ. In order to define two operators f̃i and
ẽi on B t {0}, we read addable i-nodes and removable i-nodes from the first row
to the last row and record the result as a sequence of A’s and R’s. Then we apply
an algorithm which we call RA-deletion. Choose any R · · ·A, where the middle
· · · means the letters which have been already deleted, and change it to · · · · ·. We
repeat this procedure as many times as possible. The final sequence is of the form

· · ·A · · ·A · · ·A · · ·R · · ·R · · ·R · · ·R · · ·

where · · · is a sequence of dots of length greater than or equal to 0. The final
sequence is uniquely determined (see [A1, Lemma 11.2]). The nodes which appear
in the final sequence are called addable normal i-nodes and removable normal

i-nodes. We define f̃iλ to be the partition obtained from λ by adding the node
3



which corresponds to the rightmost A in the final sequence. If there is no A in
the final sequence, we set f̃iλ = 0. Similarly, we define ẽiλ to be the partition
obtained from λ by removing the node which corresponds to the leftmost R in the
final sequence, and 0 if no R exists in the final sequence. Finally, we define f̃i0 = 0
and ẽi0 = 0. Define

ϕi(λ) = max{k ∈ Z≥0 | f̃k
i λ 6= 0}, εi(λ) = max{k ∈ Z≥0 | ẽk

i λ 6= 0}.

In other words, ϕi(λ) is the number of A’s in the final sequence, and εi(λ) is the
number of R’s in the final sequence.

The set B with the additional data wt, εi, ϕi, ẽi and f̃i is a realization of the
crystal B(Λm). This result is due to Misra and Miwa. See [A1, Theorem 11.11].
We denote the empty partition in B(Λm) by ∅m.

It is convenient to work with the abacus display of λ. The set of beta numbers

of charge m associated with λ is, by definition, the set J of decreasing integers

j0 > j1 > j2 > · · · > jk > · · ·

defined by jk = λk +m − k, for k ≥ 0. It has the property that jk = m − k, for
k >> 0. We consider an abacus with e runners

· · · · · ·

· · · · · ·

0 1 . . . e− 1

e e+ 1 · · · 2e− 1

· · · · · ·

· · · · · ·

and put beads on the numbers {jk | k ≥ 0}. This is the abacus display of charge
m associated with λ.

Example 2.1. Let e = 3, m = 0, and λ = (4, 2, 1).
To read J from λ, we look at each row and find the content of the node which is

adjacent to the right end of the row.

× × × × 4
× × 1
× −1
−3
−4
·
·

Thus, J = {4, 1,−1,−3,−4, . . .}, and the abacus display of λ is as follows.

· · ·

−6 −5 −4

−3 −1

1

4

We call j ∈ J with j+eZ = i+1 a removable i-integer, and j ∈ J with j+eZ = i
an addable i-integer. The Kashiwara operators ẽi and f̃i in terms of J are given
by the same procedure as above. We change the sequence j0, j1, . . . to a sequence
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of dots, R’s, and A’s, and apply the RA-deletion as many times as possible. Note
that a removable or addable integer j ∈ J may not correspond to a removable or
addable node of λ. However, this happens precisely when λk = λk+1. In this case,
the content of the node which is adjacent to the right end of row k is a removable
i-integer, and the content of the node which is adjacent to the right end of row k+1
is an addable i-integer. In RA-deletion, these two adjacent values are removed from
the final sequence.

The following definition is given in [KLMW1].

Definition 2.2. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of

charge m. Let U(J) be the set of beads which we may slide up by one in their

runners. In other words,

U(J) = {x ∈ J | x− e 6∈ J}.

If U(J) = ∅ then define up(λ) = λ. Suppose U(J) 6= ∅. Then set p = max U(J)
and consider

V (J) = {x > p | x 6∈ p+ eZ, x− e ∈ J, x 6∈ J}.

Set q = min V (J). Then we define up(J) to be the set (J \ {p})∪ {q}. That is, we

obtain up(J) by moving the bead p to q. We denote the corresponding partition by

up(λ).

Example 2.3. Let e = 3, m = 2 and λ = (3, 2, 1). Then the abacus display of λ is

· · ·

−3 −2 −1

1

3 5

Then U(J) = {3, 5} and p = 5. Thus V (J) = {6} and q = 6. Therefore, up(J) is

given by

· · ·

−3 −2 −1

1

3

6

Thus, up(λ) = (4, 2, 1).

Lemma 2.4. Let λ ∈ B(Λm).
(1) λ ⊂ up(λ).
(2) up(λ) is e-restricted.
(3) `(up(λ)) = `(λ).

Proof. (1) Let j′0 > j′1 > · · · be the beta numbers of charge m associated with
up(λ). We set j−1 = ∞. Then, there exists s ≥ −1 such that js > q ≥ js+1. q 6∈ J
implies that q > js+1. Since q > p, there also exists t > s such that jt = p. Then,
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for t > s+ 1,






























j′k = jk (0 ≤ k ≤ s)

j′s+1 = q > js+1

j′k = jk−1 > jk (s+ 1 < k < t)

j′t = jt−1 > jt = p

j′k = jk (k ≥ t+ 1)

If t = s + 1, replace the middle three lines with j ′s+1 = q > jt = p. In any case,
j′k ≥ jk, for all k. This implies the result.

(2) We only have to check the effect of removing p. We want to show j ′t−j
′
t+1 ≤ e.

Since λ is e-restricted and p − e 6∈ J , there exists x ∈ {p − e + 1, . . . , p − 1} ∩ J .
Note that jt+1 is the largest element of J which is smaller than jt = p. Thus we
have x ≤ jt+1 = j′t+1.

Suppose first that x+ e 6∈ J . Then q ≤ x+ e, which implies that

x ≤ j′t+1 < j′t ≤ j′s+1 = q ≤ x+ e.

Thus, up(λ) is e-restricted.
Suppose next that x + e ∈ J . Then jt = p < x + e implies j′t = jt−1 ≤ x + e.

Thus x ≤ j′t+1 < j′t ≤ x+ e and up(λ) is e-restricted.
(3) Let s ∈ Z be such that Z≤s ⊂ J and s+1 6∈ J . Then `(λ) = |{x ∈ J | x > s}|.

As p > s and p moves to q > p, we have Z≤s ⊂ J ′ and s + 1 6∈ J ′, which implies
`(up(λ)) = |{x ∈ J ′ | x > s}|, and `(up(λ)) = `(λ). �

We remark that we may deduce λ ⊂ up(λ) from |J ′ ∩ Z≥a| ≥ |J ∩ Z≥a|, for
all a ∈ Z. In fact, if there existed k ≥ 0 such that j ′0 = j0, . . . , j

′
k−1 = jk−1 and

j′k < jk, then we would obtain |J ′ ∩ Z≥jk
| < |J ∩ Z≥jk

|, a contradiction.
If we apply the up operation successively, then we reach U(J) = ∅ after finitely

many steps. To see this, choose s such that Z≤s ⊂ J . Then Z≤s ⊂ up(J). Thus,
Z≤s remains untouched during the successive applications of up operations. Let N
be the number of elements in {x ∈ J | x > s} and K = Z≤s ∪{s+ke | 1 ≤ k ≤ N}.
We write J ≤ J ′ if jk ≤ j′k, for all k ≥ 0. Note that if J is the set of beta numbers
associated with an e-restricted partition and of the form J = Z≤s ∪{j0, . . . , jN−1},
where j0 > · · · > jN−1 > s, then J ≤ K. Thus, we have upi(J) ≤ K, for all i ≥ 0.
As the sequence J, up(J), up2(J), . . . is strictly increasing as long as U(J) 6= ∅, we
reach U(J) = ∅ after finitely many steps.

This allows us to define roof(J) as follows.

Definition 2.5. Let λ ∈ B(Λm) and let J be as before. Apply the up operation to

J until U(J) = ∅. We denote the resulting upmax(J) by roof(J), and denote the

corresponding partition by roof(λ).

Note that by definition, roof(λ) is an e-core.

Definition 2.6. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of

charge m. Let U(J) be as before. If U(J) = ∅ then define down(λ) = λ. Suppose

U(J) 6= ∅. Then set p′ = min U(J) and consider

W (J) = {x > p′ − e | x ∈ J, x+ e 6∈ J} ∪ {p′}.

Set q′ = min W (J). Then we define down(J) = (J \ {q′}) ∪ {p′ − e}. That is,

we obtain down(J) by moving the bead q′ to p′ − e. We denote the corresponding

partition by down(λ).

6



Lemma 2.7. Let λ ∈ B(Λm).
(1) λ ⊃ down(λ).
(2) down(λ) is e-restricted.
(3) a(down(λ)) = a(λ).

Proof. (1) Let j′0 > j′1 > · · · be the beta numbers of charge m associated with
down(λ). Then, there exists s ≥ 0 such that js > p′ − e > js+1, and there exists
0 ≤ t ≤ s such that jt = q′. Now,































j′k = jk (0 ≤ k < t)

j′t = jt+1 < jt = q′

j′k = jk+1 < jk (t < k < s)

j′s = p′ − e < js

j′k = jk (k ≥ s+ 1)

We replace the middle three lines with j ′t = p′ − e < jt = q′ when t = s. Thus
j′k ≤ jk, for all k. This implies the result.

(2) We only have to consider the effect of removing q′ as before. We want to
show j′t−1 − j′t ≤ e. Note that there exists x ∈ {p′ − e+ 1, . . . , p′ − 1}∩ J since λ is
e-restricted and p′ − e 6∈ J .

Suppose first that q′ 6= p′. Then p′ ≥ j′t−1 since p′ > q′ and j′t−1 = jt−1 is the
smallest element of J which is greater than jt = q′. Thus

p′ − e = j′s ≤ j′t < j′t−1 ≤ p′.

Suppose next that q′ = p′. There exists x ∈ {p′− e+1, . . . , p′− 1}∩J as before.
As x < p′ = jt and x ∈ J , we have x ≤ jt+1. On the other hand, q′ = p′ implies
that x+ e 6∈ J is impossible. Thus, jt = p′ < x+ e implies jt−1 ≤ x+ e and

x ≤ jt+1 = j′t < j′t−1 = jt−1 ≤ x+ e.

(3) As a(λ) = j0 −m and a(down(λ)) = j ′0 −m, we show j0 = j′0. If p′ < j0 then
q′ ≤ p′ < j0. If p′ = j0 then j0 − e 6∈ J and, since λ is e-restricted, there exists
x ∈ J such that j0 − e < x < j0. Then, as x + e 6∈ J , x ∈ W (J) and q′ ≤ x < j0.
Hence q′ < j0 in both cases and q′ moves to p′ − e < q′. Thus j0 = j′0. �

As before, we may deduce λ ⊃ down(λ) from |J ′∩Z≥a| ≤ |J ∩Z≥a| for all a ∈ Z.
We apply the down operation successively. It is easy to see that we reach U(J) =

∅ after finitely many steps: the size of the corresponding partition strictly decreases
as long as U(J) 6= ∅. In section 7, we need a better understanding of how the value
p′ changes during the process. Thus, we analyze it in detail here.

Suppose that we apply the down operation to Jold to obtain Jnew and that

U(Jold) 6= ∅ and U(Jnew) 6= ∅. Since p′
old 6∈ U(Jnew) implies p′

new 6= p′
old

, we

have either p′
new

> p′
old

or p′
new

< p′
old

.

Suppose that p′
new

< p′
old

. If p′
new − e 6∈ Jold then p′

new 6∈ Jold as p′
new ∈ Jold

would imply p′
new ≥ p′

old
. Hence p′

new ∈ Jnew \Jold and we have p′
new

= p′
old−e.

The set U(J) changes in the following way. Let q′ = minW (Jold).

(a) If q′ < p′
old

then q′ − ke ∈ Jold, for all k ≥ 0, and q′ + e 6∈ Jold. Hence,

U(Jnew) \ {p′
new

} ⊂ U(Jold) \ {p′
old

}.
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(b) If q′ = p′
old

then

U(Jnew) \ {p′
new

} ⊂
(

U(Jold) \ {p′
old

}
)

∪ {p′
old

+ e}.

Next suppose that p′ starts decreasing at p0 = minU(J0) and stops decreasing at
pN = minU(JN ). By the above consideration, the innovation of p′ is given by the

recursion p′
new

= p′
old−e, so pk = p0−ke, for 0 ≤ k ≤ N . Denote qk = minW (Jk).

Define s ≥ 0 by qk = pk, for 0 ≤ k < s, and qs 6= ps. We shall show by induction
on k that

U(Jk) ∩ Z≤p0 = {p0 − ke}, for 0 ≤ k ≤ N .

For 0 ≤ k < s, Jk+1 is obtained from Jk by sliding the bead at p0 − ke up to
p0− (k+1)e. Thus, if k ≥ 1 and x ≤ p0 is such that x ∈ Jk+1 and x+eZ = p0 +eZ,

then x ≤ p0 − (k + 1)e. Suppose that p′
old

+ e ∈ U(Jnew) occured at k ≥ 1. Thus,

p′
new

= p0 − (k + 1)e and p′
old

+ e = p0 − (k − 1)e. Let x = p′
old

+ e. Then
x ≤ p0 satisfies x ∈ Jk+1 and x + eZ = p0 + eZ but x > p0 − (k + 1)e. Thus,

p′
old

+ e 6∈ U(Jnew) and

U(Jk+1) \ {pk+1} ⊂ U(Jk) \ {pk} ⊂ Z≥p0+1

by the induction hypothesis.
For s ≤ k ≤ N , we have qk < pk. If k = s then this is by definition. Suppose

that qk < pk. Then qk − e ∈ Jk and qk 6∈ Jk+1, pk+1 − e = pk − 2e < qk − e imply
qk − e ∈W (Jk+1). Hence,

qk+1 ≤ qk − e < pk − e = pk+1.

Therefore, we have

U(Jk+1) \ {pk+1} ⊂ U(Jk) \ {pk} ⊂ Z≥p0+1,

for s ≤ k < N . We have proved that U(Jk) ∩ Z≤p0 = {pk}, for 0 ≤ k ≤ N .

Now, set Jold = JN and p′
old

= pN . Then we obtain Jnew from Jold by moving

qN to pN − e. Suppose that U(Jnew) 6= ∅. Then p′
new

> p′
old

.
We claim that p′

new
> p0. In fact, as pN − e 6∈ U(Jnew), we have either

p′
new ∈ U(JN )\{pN} or p′

new
= qN + e. In the former case, U(JN )∩Z≤p0 = {pN}

implies p′new > p0. Suppose that p′new = qN + e ≤ p0. If qk < pk for some k ≤ N ,
then qN < pN , and pN < qN + e 6∈ JN implies qN + e 6∈ Jnew, which contradicts
p′

new ∈ Jnew. If qk = pk for 0 ≤ k ≤ N , then p0 − ke is not contained in Jnew,
for 0 ≤ k ≤ N . So qN + e = p0 − (N − 1)e 6∈ Jnew either. We have proved that
p′

new
> p0.

As we reach U(J) = ∅ after finitely many steps, we may define base(J) as follows.

Definition 2.8. Let λ ∈ B(Λm) and let J be as before. Apply the down operation

to J until U(J) = ∅. We denote the resulting downmax(J) by base(J), and denote

the corresponding partition by base(λ).

Note that base(λ) is an e-core by definition.

3. Weyl group action

Let B be a g-crystal and W the corresponding Weyl group. In our case of
B(Λm), W is the Coxeter group generated by {si | i ∈ Z/eZ} subject to s2i = 1,
sisi+1si = si+1sisi+1 and sisj = sjsi otherwise.
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Theorem 3.1 ([K1, Theorem 9.4.1]). Let B be a normal crystal. Then the following

defines a W -action on B.

sib =

{

f̃
wt(b)(hi)
i b (if wt(b)(hi) ≥ 0)

ẽ
−wt(b)(hi)
i b (if wt(b)(hi) ≤ 0)

Further, wt(sib) = si(wt(b)) = wt(b) − wt(b)(hi)αi.

Recall that B(Λm) is a normal crystal. Hence, we have a W -action and

ẽmax
i λ = ẽ

εi(λ)
i λ, f̃max

i λ = f̃
ϕi(λ)
i λ.

Definition 3.2. Let λ ∈ B(Λm). We say that λ is an si-core if x ∈ U(J) implies

x+ eZ 6= i and x+ eZ 6= i+ 1.

Thus, λ is an e-core if and only if it is an si-core, for all i ∈ Z/eZ.

Lemma 3.3. Suppose that λ ∈ B(Λm).
(1) Let Ai(λ) and Ri(λ) be the set of addable i-nodes and the set of removable i-nodes

of λ respectively. Then

wt(λ)(hi) = |Ai(λ)| − |Ri(λ)|.

(2) Assume that λ is an si-core. Then either

(i) Ai(λ) = ∅ and siλ = ẽmax
i λ = λ \ {all removable i-nodes}, or

(ii) Ri(λ) = ∅ and siλ = f̃max
i λ = λ ∪ {all addable i-nodes}.

Proof. (1) is proved by induction on |λ|. If λ = ∅m, Λm(hi) = δim proves the result.
Suppose that λ = µ∪{x} and the residue of x is j. Thus wt(λ) = wt(µ)−αj . Note
that

wt(λ)(hi) =











wt(µ)(hi) (j 6= i, i± 1)

wt(µ)(hi) + 1 (j = i± 1)

wt(µ)(hi) − 2 (j = i)

Checking how Ai(µ) and Ri(µ) change when x is added, we obtain the result.
(2) For a hook Γ = (a, 1r), the a nodes consist the arm of Γ and the r nodes

consist the leg of Γ. The residue of the lowest node of the leg is called the residue
of Γ. Let J be the set of beta numbers of charge m associated with λ. Recall that
sliding a bead in J on the ith runner up by one is the same as removing an e-hook
Γ whose residue is i. Suppose that there exist x ∈ Ai(λ) and y ∈ Ri(λ) such that
x is in the jth row of λ and y is in the kth row of λ. If j < k then we may remove
at least one e-hook of residue i from λ. Similarly, if j > k then we may remove at
least one e-hook of residue i+ 1 from λ. Since λ is an si-core, both cannot occur.
In other words, one of Ai(λ) or Ri(λ) must be empty. Thus, RA-deletion does not
occur, which implies that either εi(λ) = |Ri(λ)| and ϕi(λ) = 0, or εi(λ) = 0 and
ϕi(λ) = |Ai(λ)| respectively. Now the result follows from (1). �

We show that this Weyl group action coincides that of [KLMW1] on e-cores.

Lemma 3.4. Let λ be an si-core, J the corresponding set of beta numbers of charge

m. We denote by siJ the set of beta numbers of charge m associated with siλ.
(1) If i 6= 0 then siJ is obtained by switching the ith and (i+ 1)th runners.

(2) The (e − 1)th runner of s0J is obtained from the 0th runner of J by sliding up

by one. Similarly, the 0th runner of s0J is obtained from the (e− 1)th runner of J
by sliding down by one.
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(3) siλ is an si-core.

Proof. (1) If the length of the ith runner of J exceeds that of (i + 1)th runner by
k, these k beads correspond to addable i-nodes of λ. Thus, Lemma 3.3 (2) implies
that siλ is obtained from λ by adding all the addable i-nodes. The resulting siJ is
the same as the one which is obtained by switching the two runners. If the length of
the (i+ 1)th runner of J exceeds that of ith runner by k, these k beads correspond
to removable i-nodes of λ. Thus, Lemma 3.3 (2) again implies that siJ is obtained
from J by switching the two runners.

The proof of (2) is entirely similar to that of (1) and (3) is an obvious consequence
of (1) and (2). �

The following proposition seems to be well-known, but we could not find a ref-
erence.

Proposition 3.5. The set of e-cores in B(Λm) coincides the W -orbit through ∅m.

Proof. We can prove that an e-core belongs to W∅m by induction on |λ|. Let x be
the right end of the last row of λ, and let i be the residue of x. Set µ = ẽmax

i λ. Then

|µ| < |λ| since x is a removable normal i-node, and λ = f̃max
i µ since λ is an e-core.

Since the set of e-cores is stable under W -action by Lemma 3.4 (3), µ is again an
e-core, so µ ∈ W∅m by the induction hypothesis. Thus, we have λ = siµ ∈ W∅m.
Since a non-empty W -stable subset of a W -orbit must coincide with the W -orbit
itself, we have the result. �

Definition 3.6. Let Wm be the subgroup of W generated by {si | i 6= m}. We

denote by W/Wm the set of distinguished coset representatives.

As Wm is the Coxeter group of type Ae−1, Wm has the longest element. Thus
the following definition makes sense.

Definition 3.7. We denote by wm the longest element of Wm.

Recall that W becomes a poset by the Bruhat-Chevalley order. We write u ≤ v,
for u, v ∈ W . By virtue of Proposition 3.5, each e-core λ ∈ B(Λm) can be written
in the form λ = w∅m, for w ∈W/Wm, in a unique manner.

4. Demazure crystal

Following [K1] and [K3], we introduce two types of Demazure crystals.

Definition 4.1. Let y, w ∈ W and let y = si1 · · · si`
be a reduced expression for y.

Then we define By(Λm) and Bw(Λm) as follows.

By(Λm) = {f̃a1

i1
· · · f̃a`

i`
∅m | (a1, . . . , a`) ∈ (Z≥0)

`} \ {0},

Bw(Λm) = {b ∈ B(Λm) | Gv(b) ∈ U−
v (g)uwΛm

}.

By [K1, Proposition 9.1.3, 9.1.5], By(Λm) does not depend on the choice of the
reduced expression. For the notations Gv(b) and uwΛm

, see §6.
The following are fundamental properties of the Demazure crystals. The results

hold for any dominant integral weight.

Proposition 4.2 ([K3, Proposition 3.2.3, 3.2.4, 4.3, 4.4]).

(1) ẽiBy(Λm) ⊂ By(Λm) ∪ {0} and f̃iB
w(Λm) ⊂ Bw(Λm) ∪ {0}.

(2) If siy < y then By(Λm) = ∪k≥0f̃
k
i Bsiy(Λm) \ {0}.
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(3) If siw > w then Bw(Λm) = ∪k≥0ẽ
k
iB

siw(Λm) \ {0}.
(4) Let y, w ∈ W/Wm. Then the following are equivalent.

(i) y ≥ w.

(ii) Bw(Λm) ∩ By(Λm) 6= ∅.
(iii) Bw(Λm) ⊂ By(Λm).
(iv) w∅m ∈ By(Λm).
(v) By(Λm) ⊂ Bw(Λm).
(vi) y∅m ∈ Bw(Λm).

Next theorem is the main result of [KLMW1]. However, the proof we will give
is slightly different from the original: see Theorem 6.2, Theorem 6.3 and Corollary
6.4.

Theorem 4.3 ([KLMW1, Theorem 1.1]). In the partition realization of B(Λm),
we have

By(Λm) = {λ ∈ B(Λm) | roof(λ) ⊂ y∅m}.

Proposition 4.4. Let λ = u∅m and µ = v∅m, for u, v ∈ W .

(1) If u ≤ v then λ ⊂ µ.
(2) If λ ⊂ µ and u, v ∈W/Wm then u ≤ v.

Proof. (1) We prove this by induction on `(v). Let v = sisi2 · · · si`
be a reduced

expression. Then u is a subword of the expression.
First we suppose that the leftmost si does not appear in this subword. Then

u ≤ siv and the induction hypothesis implies that

λ = u∅m ⊂ siv∅m = siµ.

Write w = siv. Then w < siw since siv < v. If w−1αi were a negative root, then
the standard argument would show that w > siw. Hence w−1αi is a positive root.
In other words, v−1αi is a negative root and 〈Λm, v

−1hi〉 ≤ 0. We have

wt(siµ) = wt(siv∅m) = sivΛm = vΛm − 〈Λm, v
−1hi〉αi.

Hence wt(siµ) − wt(µ) ∈
∑

j∈Z/eZ
Z≥0αj . Note that

{

wt(µ) = Λm −
∑

j∈Z/eZ
Nj(µ)αj ,

wt(siµ) = Λm −
∑

j∈Z/eZ
Nj(siµ)αj .

Thus |siµ| ≤ |µ|. In particular, µ is obtained from siµ by adding all addable i-nodes
by Lemma 3.3 (2). Hence λ ⊂ siµ ⊂ µ.

Next suppose that the leftmost si appears in the subword for u. Then siu ≤ siv
and the induction hypothesis implies siλ ⊂ siµ. Note that siu < u and siv < v.
Thus, the same argument as above shows that λ and µ are obtained from siλ
and siµ by adding all addable i-nodes, respectively. If an addable i-node of siλ is
contained in siµ, it is contained in siµ and hence in µ. If an addable i-node of siλ is
not contained in siµ, then it is also an addable i-node of siµ. Thus, it is contained
in µ. We have proved λ ⊂ µ.

(2) We prove this by induction on `(v) as above. If λ = µ then there is nothing
to prove. So assume that λ 6= µ. Pick a removable node of the skew shape µ/λ
and denote its residue by i. As µ is an e-core, siµ ⊂ µ and siµ 6= µ. Thus we have
siv < v by (1).
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We show that we have either λ ⊂ siµ or siλ ⊂ siµ. Suppose that λ 6⊂ siµ. Then
any node x ∈ λ \ siµ ⊂ µ \ siµ is a removable i-node of λ. Thus siλ ⊂ siµ follows.
Hence, we consider these two cases.

First suppose that λ ⊂ siµ. Then the induction hypothesis implies that u ≤ siv,
as u is a distinguished coset representative. Thus u ≤ v.

Next suppose that siλ ⊂ siµ and λ 6⊂ siµ. Then siλ ⊃ λ does not occur. Hence,
siλ ⊂ λ and siλ 6= λ, which implies siu < u as before.

Write siu = u′t, where u′ ∈ W/Wm and t ∈ Wm. Let u′ = si1 · · · sip
and

t = sj1 · · · sjq
be reduced expressions of u′ and t respectively. Then, as

u = sisi1 · · · sip
sj1 · · · sjq

and `(u) = `(siu) + 1 = `(u′) + `(t) + 1 = p+ q + 1,

this is a reduced expression of u. Since u is a distinguished coset representative,
we have q = 0 and siu is distinguished. Now the induction hypothesis implies
siu ≤ siv. As si(siv) > siv, we have u ≤ v as desired. �

Corollary 4.5. Write roof(λ) = yλ∅m, for a unique yλ ∈ W/Wm. Then

yλ = min {y ∈ W | λ ∈ By(Λm)}

with respect to the Bruhat-Chevalley order.

Proof. If λ ∈ By(Λm) then Theorem 4.3 shows that roof(λ) ⊂ y∅m. Then Propo-
sition 4.4 implies that yλ ≤ y. As roof(λ) ⊂ yλ∅m, we have λ ∈ Byλ

(Λm) and yλ is
the unique minimal element of {y ∈W | λ ∈ By(Λm)}. �

5. Littelmann’s path model

Littelmann introduced a realization of Kashiwara crystals in terms of W . [NS2,
§1] is a concise review of the path model. The results of this section hold for a
general dominant integral weight, but we state them only for Λm.

Definition 5.1. Let µ 6= ν ∈ WΛm be two weights. If there exists a sequence of

positive real roots β1, . . . , βr such that

〈sβj−1 · · · sβ1µ, hβj
〉 ∈ Z<0,

for 1 ≤ j ≤ r and ν = sβr
sβr−1 · · · sβ1µ, then we write µ > ν. Here, hβj

is the

coroot of βj .

Let 0 < a < 1 be a rational number. A sequence

µ, sβ1µ, sβ2sβ1µ, · · · , sβr
sβr−1 · · · sβ1µ = ν

with r maximal is called an a-chain if

〈sβj−1 · · · sβ1µ, hβj
〉 ∈ a−1Z<0,

for all j.

If µ = yΛm and ν = wΛm for y, w ∈W/Wm, then µ > ν is equivalent to y > w.

Lemma 5.2 ([L2, Lemma 4.1]).
(1) If µ ≥ ν is such that µ(hi) < 0 and ν(hi) ≥ 0, then siµ ≥ ν.
(2) If µ ≥ ν is such that µ(hi) ≤ 0 and ν(hi) > 0, then µ ≥ siν.
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Let 0 = a0 < a1 < · · · < as = 1 and ν1, . . . , νs ∈WΛm. We consider a piecewise
linear path π(t), for 0 ≤ t ≤ 1, which takes values in the dual space of the Cartan
subalgebra:

π(t)|[aj−1 ,aj ] =

j−1
∑

k=1

(ak − ak−1)νk + (t− aj−1)νj .

In other words, we start with the origin, and change direction from νj to νj+1 at
t = aj , for 1 ≤ j < s.

Definition 5.3. The piecewise linear path π(t) given by (ν1, . . . , νs; a0, . . . , as) as

above, is a Lakshmibai-Seshadri path, if the following hold for all j.

(i) aj is a rational number and νj > νj+1.

(ii) There exists an aj-chain for νj > νj+1.

We denote the set of Lakshmibai-Seshadri paths by B(Λm).

We call Lakshmibai-Seshadri paths LS paths for short.

Definition 5.4. Let π ∈ B(Λm) be given by (ν1, . . . , νs; a0, . . . , as). We call ν1

the initial direction of π and denote it by i(π). Similarly, we call νs the final

direction and denote it by f(π).

Definition 5.5. We say that π(t) satisfies the integrality condition if the min-

imum value of π(t)(hi) is an integer, for all i.

Lemma 5.6 ([L2, Lemma 4.5(d)]). The LS-paths satisfy the integrality condition.

Define Q = min{π(t)(hi) | 0 ≤ t ≤ 1}. We shall define the operators ẽi and f̃i on

B(Λm)t{0}. First of all, we set ẽiπ = 0 if Q > −1, and f̃iπ = 0, if Q > π(1)(hi)−1.
Suppose that Q ≤ −1. Then define

t1 = min{t ∈ [0, 1] | π(t)(hi) = Q}

t0 = max{t ∈ [0, t1] | π(t)(hi)|[0,t] ≥ Q+ 1}

and reflect the path π(t) for the interval [t0, t1] to define:

(ẽiπ)(t) =











π(t) (0 ≤ t ≤ t0)

si(π(t) − π(t0)) + π(t0) (t0 ≤ t ≤ t1)

π(t) + αi (t1 ≤ t ≤ 1)

Suppose that Q ≤ π(1)(hi) − 1. Then define

t0 = max{t ∈ [0, 1] | π(t)(hi) = Q}

t1 = min{t ∈ [t0, 1] | π(t)(hi)|[t,1] ≥ Q+ 1}

and define:

(f̃iπ)(t) =











π(t) (0 ≤ t ≤ t0)

si(π(t) − π(t0)) + π(t0) (t0 ≤ t ≤ t1)

π(t) − αi (t1 ≤ t ≤ 1)

We then define wt(π) = π(1) and

εi(π) = −Q, ϕi(π) = π(1)(hi) −Q.

Then, by [Jo, Corollary 6.4.27] or [K5, Theorem 4.1], the set B(Λm) with the

additional data wt, εi, ϕi, ẽi and f̃i is a realization of the crystal B(Λm). The
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isomorphism of the two realizations, one by e-restricted partitions, the other by the
LS-paths, is unique. Thus, we identify the two realizations and sometimes write
λ = (ν1, . . . , νs; a0, . . . , as), for an e-restricted partition λ. We denote ν1 and νs by
i(λ) and f(λ) respectively.

The following is one of the key results we use in this paper.

Theorem 5.7 ([L3, Theorem 10.1]). Let

π = π(1) ⊗ · · · ⊗ π(r) ∈ B(Λm1) ⊗ · · ·B(Λmr
).

Then π belongs to B(Λm1 + · · ·Λmr
) if and only if there exists a sequence

w
(1)
1 ≥ · · · ≥ w

(1)
N1

≥ w
(2)
1 ≥ · · · ≥ w

(2)
N2

≥ · · · · · · ≥ w
(r)
Nr

in W such that

π(k) = (w
(k)
1 Λmk

, . . . , w
(k)
Nk

Λmk
; a

(k)
0 , . . . , a

(k)
Nk

),

for 1 ≤ k ≤ r.

Recall that w0 is the longest element of W0.

Corollary 5.8. Let π = π(1) ⊗ · · · ⊗ π(r) ∈ B(Λ0)
⊗d ⊗ B(Λm)⊗r−d, and write

wΛ0 = f(π(d)) and w′Λm = i(π(d+1)), for w ∈W/W0 and w′ ∈W/Wm respectively.

Then π belongs to B(dΛ0 + (r − d)Λm) if and only if

(a) f(π(k)) ≥ i(π(k+1)), for 1 ≤ k < d,
(b) ww0 ≥ w′,

(c) f(π(k)) ≥ i(π(k+1)), for d < k < r.

Proof. If π belongs to B(dΛ0+(r−d)Λm), then Theorem 5.7 gives a non-increasing
sequence in W , which implies that conditions (a) to (c) hold.

Suppose that conditions (a) to (c) hold. Consider the elements w ∈W/W0 such
that wΛ0 appears as one of the direction vectors of π(1), . . . , π(d). Multiplying them
with w0 simultaneously, we can find the desired sequence in W . Thus, Theorem
5.7 implies that π belongs to B(dΛ0 + (r − d)Λm). �

Our purpose is to interpret this result in terms of Young diagrams. To achieve
this goal, we first have to find which partitions correspond to f(π) and i(π) when
π corresponds to a partition λ.

For this, we need to use the approach to path models in [K5] and [K1, chapter
8].

Definition 5.9. Let B and B′ be crystals. A map ψ : B → B′ is called a crystal

morphism of amplitude h if

(i) wt(ψ(b)) = hwt(b), εi(ψ(b)) = hεi(b) and ϕi(ψ(b)) = hϕi(b),

(ii) ψ(ẽib) = ẽh
i ψ(b) and ψ(f̃ib) = f̃h

i ψ(b), for all b ∈ B.

Definition 5.10. (1) U−
v (g) is a module over the Kashiwara algebra, which

defines a crystal. This is the crystal B(∞) and

εi(b) = max{k ∈ Z≥0 | ẽk
i b 6= 0}, ϕi(b) = εi(b) + wt(b)(hi).

(2) Define, for a ∈ Z,

wt(a) = aαi, εj(a) =

{

−a (j = i)

−∞ (j 6= i)
, ϕj(a) =

{

a (j = i)

−∞ (j 6= i)
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and

ẽj(a) =

{

a+ 1 (j = i)

0 (j 6= i)
, f̃j(a) =

{

a− 1 (j = i)

0 (j 6= i)
.

Then Z becomes a crystal. This is the crystal Bi.

(3) Let Λ be a weight, and define

wt(tΛ) = Λ, εi(tΛ) = ϕi(tΛ) = −∞, ẽitΛ = f̃itΛ = 0.

Then {tΛ} is the crystal TΛ.

(4) Define another crystal structure on the underlying set of B(∞) by redefining

(wt, εi, ϕi, ẽi, f̃i) by

wtnew = −wtold, εnew
i = ϕold

i , ϕnew
i = εold

i , ẽnew
i = f̃old

i , f̃new
i = ẽold

i .

This crystal is denoted by B(−∞). It may be considered as the crystal

arising from the positive part U+
v (g). We have

ϕi(b) = max{k ∈ Z≥0 | f̃k
i b 6= 0}, εi(b) = ϕi(b) − wt(b)(hi).

We fix an infinite sequence i = (· · · , ik, · · · , i2, i1) such that ik 6= ik+1, for all k,
and that i appears infinitely many times in the sequence, for all i. Then we can
realize B(∞) as a subcrystal of Z∞

i = · · ·⊗Bik
⊗· · ·⊗Bi2⊗Bi1 [K3, Theorem 2.2.1].

This is the Kashiwara embedding and the polyhedral realization associated
with i.

Proposition 5.11 ([K1, Proposition 8.1.3]). For all h ∈ N, there exists a unique

crystal morphism Sh : B(∞) → B(∞) of amplitude h. Sh is an injective map. In

any polyhedral realization, we have

Sh(· · · , ak, · · · , a2, a1) = (· · · , hak, · · · , ha2, ha1).

In fact, this is proved by defining Sh by the above formula in the polyhedral
realization of B(∞) and showing that this is a crystal morphism of amplitude h.
Define Sh : B(∞) ⊗ TΛ → B(∞) ⊗ ThΛ by b ⊗ tΛ 7→ Sh(b) ⊗ thΛ. This is again a
crystal morphism of amplitude h.

Proposition 5.12 ([K1, Corollary 8.1.5]). Let Λ be dominant integral. Then there

exists a unique crystal morphism Sh : B(Λ) → B(hΛ) of amplitude h, for all h ∈ N.

Further, we have the following commutative diagram.

B(Λ)
Sh−→ B(hΛ)

∩ ∩

B(∞) ⊗ TΛ
Sh−→ B(∞) ⊗ ThΛ

Let λ ∈ B(Λm). Using the canonical embedding B(hΛm) ⊂ B(Λm)⊗h, we can
write

Sh(λ) = λ(1) ⊗ · · · ⊗ λ(h).

We denote

Sh(λ)1/h = λ(1)⊗1/h
⊗ · · · ⊗ λ(h)⊗1/h

,

and replace (µ⊗1/h)⊗k with µ⊗k/h, for any µ that appears in λ(1), . . . , λ(h). In this
way, we may write

Sh(λ)1/h = ν1
⊗a1 ⊗ ν2

⊗(a2−a1) ⊗ · · · ⊗ νs
⊗(1−as−1),
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where a0 = 0 < a1 < · · · < as = 1 are rational integers and ν1, . . . , νs are pairwise
distinct e-restricted partitions. Then the following theorem holds.

Theorem 5.13 ([K1, Proposition 8.3.2]). If h is sufficiently divisible then

(1) νj = wj∅m, for a unique wj ∈W/Wm.

(2) aj and νj all stabilize.

Theorem 5.14 ([K1, Proof of Theorem 8.2.3]). Given sufficiently divisible h, we

write

Sh(λ)1/h = ν1
⊗a1 ⊗ ν2

⊗(a2−a1) ⊗ · · · ⊗ νs
⊗(1−as−1)

as above, and define πλ to be the path given by (wt(ν1), . . . , wt(νs); a0, . . . , as). Then

wt(νj) = wjΛm, for 1 ≤ j ≤ s, and the following hold.

(1) πλ is a LS-path.

(2) The map B(Λm) → B(Λm) defined by λ 7→ πλ is an isomorphism of crystals.

The proof of [K1, Proposition 8.3.2] also gives a very explicit inductive algorithm
to compute the e-cores νj as follows.

Recall that the tensor product rule for B(Λm)⊗r is given by the following rule:
Let λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λm)⊗r. Then, starting with λ(r), we read addable and

removable i-nodes of each λ(k) from the first row to the last row, for k = r, r−1, . . . , 1
succesively. We then apply the RA-deletion to the resulting sequence of dots, A’s
and R’s.

Lemma 5.15. Suppose that

Sh(λ)1/h = ν1
⊗a1 ⊗ ν2

⊗(a2−a1) ⊗ · · · ⊗ νs
⊗(1−as−1).

and that f̃iλ 6= 0. Then (ak+1 − ak)h are positive integers and we write

ν1
⊗a1h ⊗ ν2

⊗(a2−a1)h ⊗ · · · ⊗ νs
⊗(1−as−1)h = µ1 ⊗ · · · ⊗ µh.

Then we may write

f̃h
i (µ1 ⊗ · · · ⊗ µh) = f̃ c1

i µ1 ⊗ f̃ c2

i µ2 ⊗ · · · ⊗ f̃ ch

i µh,

for some non-negative integers cj such that
∑h

j=1 cj = h. Then, for some multiple

h′ of h, we have

Sh′(f̃iλ)
1/h′

=
(

(siµ1
⊗(c1/ϕi(µ1))h

′/h ⊗ µ1
⊗(1−c1/ϕi(µ1))h′/h) ⊗ · · ·

· · · · · · ⊗ (siµh
⊗(ch/ϕi(µh))h′/h ⊗ µh

⊗(1−ch/ϕi(µh))h′/h)
)1/h′

.

Example 5.16. Let m = 0 and e = 3. Then λ = (3, 12) is an e-core. Thus

Sh(λ)1/h = (3, 12), for all h. Consider λ′ = (3, 13) = f̃0λ. Then, ϕ0(λ) = 3 and we

have, for h which is divisible by 3,

Sh(λ′)1/h = (4, 2, 12)⊗1/3 ⊗ (3, 12)⊗2/3.

Definition 5.17. Suppose that

Sh(λ)1/h = ν1
⊗a1 ⊗ ν2

⊗(a2−a1) ⊗ · · · ⊗ νs
⊗(1−as−1),

for sufficiently divisible h. Then we call ν1 the ceiling of λ and denote it by ceil(λ).
Similarly, we call νs the floor of λ and denote it by floor(λ).

We have wt(ceil(λ)) = i(λ) and wt(floor(λ)) = f(λ) by the definitions and
Theorem 5.14(2).
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Example 5.18. Let m = 0, e = 3, and λ = (22, 1). Then, for h which is divisible

by 6,

Sh(λ)1/h = (5, 3, 1)⊗1/3 ⊗ (4, 2)⊗1/6 ⊗ (2)⊗1/2.

Thus, ceil(λ) = (5, 3, 1) and floor(λ) = (2).

Note that in this paper we define ceil(λ) in a different manner than [KLMW1],
because we follow a slightly different line of proof. That the two definitions give
the same e-core follows from Theorem 6.2 and Corollary 6.4 below, which prove
Theorem 4.3, and Corollary 4.5.

Fayers pointed out that ceil(λ) and floor(λ) behave well under the Mullineux
map. Let us review the Mullineux map quickly. Let Hn(q) be the Hecke algebra
of type A. This is the F -algebra generated by T1, . . . , Tn−1 subject to the qua-
dratic relations (Ti − q)(Ti + 1) = 0 and the type A braid relations. Let τ be
the involution of Hn(q) defined by Ti 7→ qT−1

i . The simple Hn(q)-modules are

{Dλ | λ is e-restricted}. Then the Mullineux map is defined by Dm(λ) = (Dλ)τ . In
[LLT, Theorem 7.1], it is observed that the description of the Mullineux map ob-
tained by Brundan and Kleshchev may be expressed in terms of the crystal B(Λ0).
Shifting the residues, the Mullineux map may be described by B(Λm) also.

Proposition 5.19. Suppose that λ ∈ B(Λm) is such that λ = f̃m+i1 · · · f̃m+in
∅.

Then we have m(λ) = f̃m−i1 · · · f̃m−in
∅.

Corollary 5.20. εm+i(λ) = εm−i(m(λ)) and ϕm+i(λ) = ϕm−i(m(λ)).

Proof. If ẽk
m+iλ 6= 0 then ẽk

m−im(λ) = m(ẽk
m+iλ) 6= 0. Thus we have εm+i(λ) ≤

εm−i(m(λ)). Similarly, we have ϕm+i(λ) ≤ ϕm−i(m(λ)). Then we also have
εm+i(m(λ)) ≤ εm−i(λ) and ϕm+i(m(λ)) ≤ ϕm−i(λ). Hence the equalities hold. �

Proposition 5.21. Let λ ∈ B(Λm). Then ceil(m(λ)) and floor(m(λ)) are the

conjugate partitions of ceil(λ) and floor(λ) respectively.

Proof. We may assume that m = 0 without loss of generality. We prove by induc-
tion on |λ| that if Sh(λ) = ν1 ⊗ · · · ⊗ νh for sufficiently divisible h, then

Sh(m(λ)) = ν′1 ⊗ · · · ⊗ ν′h,

where ν′k is the conjugate partition of νk, for all k.
If |λ| = 0 there is nothing to prove. Assume that the assertion holds for λ and

that f̃iλ 6= 0. Note that νk are e-cores and thus νk has removable i-nodes only, or
addable i-nodes only. If νk has ni,k removable i-nodes then ν ′k has ni,k removable
(−i)-nodes, and similarly, if νk has ni,k addable i-nodes then ν′k has ni,k addable
(−i)-nodes. This implies that if

Sh(f̃iλ) = f̃ c1

i ν1 ⊗ · · · ⊗ f̃ ch

i νh,

then

Sh(m(f̃iλ)) = f̃ c1

−iν
′
1 ⊗ · · · ⊗ f̃ ch

−iν
′
h.

Now, to obtain Sh′(f̃iλ), for sufficiently divisible h′, we replace f̃ ck

i νk with

(siνk)⊗(ck/ϕi(νk))h′/h ⊗ ν
⊗(1−ck/ϕi(νk))h′/h
k ,

for all k. As ϕi(νk) = ϕ−i(ν
′
k), the assertion holds for f̃iλ. �
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Recall that the Mullineax map is given by conjugation of a partition when Hn(q)
is semisimple. The proof of Proposition 5.21 shows that the Mullineax map is always
given by conjugation, if we work in the right model – the path model.

The descriptions of ceil(λ) and floor(λ) are a crucial part of our main results. In
the case when e = 2, we have closed formulas for them.

Proposition 5.22. Assume that e = 2 and that λ ∈ B(Λm). Let a(λ) be the length

of the first row, and let `(λ) be the length of the first column. Then

ceil(λ) = (`(λ), `(λ) − 1, . . . , 1), floor(λ) = (a(λ), a(λ) − 1, . . . , 1).

Proof. We prove both formulas by induction on the size of λ. As λ is 2-restricted,
the last node of the first column is removable. Let i be its residue. Let µ = ẽmax

i λ =
ẽt

iλ. Then by the induction hypothesis, we have

ceil(µ) = (`(λ) − 1, `(λ) − 2, . . . , 1).

Observe that there exists an addable normal i-node on the first column of ceil(µ).
Thus all normal i-nodes are addable and the addable i-node on the first column of
ceil(µ) is the first addable i-node to be changed into a removable i-node when f̃ t

i

is applied to µ. Thus, Lemma 5.15 implies that

ceil(λ) = si(`(λ) − 1, `(λ) − 2, . . . , 1) = (`(λ), `(λ) − 1, . . . , 1).

Hence, the formula for ceil(λ) is proved.
Next assume that the formula for floor(λ) is already proved. Consider the

addable node on the first row. Let i be its residue. Then, this addable node is
a normal i-node. The induction hypothesis implies that floor(λ) has addable nor-

mal i-nodes. First suppose that ϕi(λ) > 1. Then f̃iλ differs from λ at some node

which lies in the second row or below. Thus a(f̃iλ) = a(λ). Let h be sufficiently

divisible. Then ϕi(λ) > 1 implies that we do not apply f̃max
i = f̃

hϕi(λ)
i to Sh(λ)

when computing Sh(f̃iλ). Since the addable i-nodes of floor(λ) are the last addable

normal i-nodes to be changed into removable i-nodes, that we do not apply f̃max
i

to Sh(λ) implies that floor(f̃iλ) = floor(λ) by Lemma 5.15. Hence we have proved

the formula in this case. Second suppose that ϕi(λ) = 1. Then f̃iλ differs from λ

at the addable i-node on the first row. Thus a(f̃iλ) = a(λ)+1. Let h be sufficiently

divisible. Then ϕi(λ) = 1 implies that we apply f̃max
i to Sh(λ) when computing

Sh(f̃iλ). As the addable i-nodes of floor(λ) are all normal, this implies that

floor(f̃iλ) = si floor(λ) = si(a(λ), a(λ) − 1, . . . , 1) = (a(λ) + 1, a(λ), . . . , 1).

Hence, we have proved the formula in this case also. �

6. Description of Demazure crystals

Lemma 6.1.

(1) Suppose that i(π)(hi) < 0. Then

(a) ẽiπ 6= 0.
(b) i(ẽmax

i π) = sii(π) < i(π).

(2) Suppose that f(π)(hi) > 0. Then

(a) f̃iπ 6= 0.

(b) f(f̃max
i π) = sif(π) > f(π).
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Proof. (1) (a) i(π)(hi) < 0 implies that Q = min{π(t)(hi) | 0 ≤ t ≤ 1} < 0. Thus,
Lemma 5.6 implies that Q ≤ −1 and ẽiπ 6= 0.

(b) By (a), i(ẽmax
i π)(hi) ≥ 0. Then

sii(ẽ
max
i π) ≥ i(ẽmax

i π).

On the other hand, we have either i(ẽmax
i π) = i(π) or sii(π). As i(π)(hi) < 0 we

have sii(π) < i(π) and we have the result.
(2) (a) f(π)(hi) > 0 implies that Q ≤ π(1)(hi) − 1 by the integrality condition

again. Thus f̃iπ 6= 0.
(b) The proof is similar to that of (1). �

We thank Dr. Sagaki for showing us the proof of the following theorem. The
proof for the first equality works for dominant integral weights in general.

Theorem 6.2 ([L4, Theorem 2]). Suppose y ∈W/Wm. Then

By(Λm) = {λ ∈ B(Λm) | i(λ) ≤ yΛm} = {λ ∈ B(Λm) | ceil(λ) ⊂ y∅m}.

Proof. We only have to prove the first equality. The second equality follows from
the remark at the end of Definition 5.1 and Proposition 4.4. We prove

By(Λm) ⊃ {λ ∈ B(Λm) | i(λ) ≤ yΛm}

by induction on `(y). If y = 1 then By(Λm) = {∅m} and i(λ) ≤ Λm implies that
λ = ∅m. Thus the statement is true.

Let y = sisi2 · · · si`
be a reduced expression. First we remark that siyΛm = yΛm

is impossible: otherwise siy = yu, for some u ∈ Wm, which implies `(siy) < `(y) ≤
`(yu) = `(siy), a contradiction. Thus yΛm(hi) < 0 and siy ∈W/Wm.

Assume that i(λ) ≤ yΛm. If i(λ)(hi) ≥ 0 then Lemma 5.2 (1) implies that
i(λ) ≤ siyΛm. Hence, by the induction hypothesis and the fact that siy < y,
Proposition 4.2 (4) implies that λ ∈ Bsiy(Λm) ⊂ By(Λm). If i(λ)(hi) < 0 then
Lemma 6.1 (1) implies that i(ẽmax

i λ) = sii(λ) < i(λ). Since siyΛm < yΛm and
i(λ) ≤ yΛm, we have sii(λ) ≤ siyΛm. The induction hypothesis then implies that
ẽmax

i λ ∈ Bsiy(Λm). Now, λ ∈ By(Λm) by Proposition 4.2 (2).
The opposite inclusion is easy to prove. In fact, if λ ∈ By(Λm) then we may

write λ = f̃a1

i · · · f̃a`

i`
∅m. We apply f̃a1

i · · · f̃a`

i`
to the path associated with ∅m and

we obtain i(λ) = y′Λm, for some y′ ≤ y. Hence i(λ) ≤ yΛm. �

Theorem 4.3 is proved by the theorem below, which is called the “roof lemma”in
[KLMW1].

Theorem 6.3 ([KLMW1, Lemma 3.3]). Let λ ∈ B(Λm). Denote the residue of

the removable node on the last row by i. Then

roof(λ) ⊃ roof(ẽmax
i λ) = si roof(λ).

Corollary 6.4. roof(λ) = ceil(λ).

Proof. Note that Lemma 5.15 implies that

ceil(λ) ⊃ ceil(ẽmax
i λ) = si ceil(λ).

Thus induction on the size of λ proves the result. �
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Hence, Theorem 4.3 follows from Theorem 6.2 and Corollary 6.4.
Our aim is to prove a similar result for Bw(Λm). For this, we need a desciption of

Bw(Λm) which is similar to the description of By(Λm) in Theorem 6.2. Fortunately,
such a result exists. We thank Kashiwara and Sagaki, who kindly showed us the
result. Here we follow Kashiwara’s argument. As there exists no written proof, he
permitted us to include his argument here.

Before explaining the result, which is Theorem 6.23 below, we recall more results
from the crystal theory.

Denote the canonical basis of U−
v (g) by {Gv(b) | b ∈ B(∞)}. Let Λ be a dominant

integral weight. Then the irreducible highest weight module with highest weight
Λ has the basis {Gv(b)uΛ | b ∈ B(∞)} \ {0}, where uΛ is a highest weight vector.
When wt(Gv(b)uΛ) = wΛ, for w ∈W , we denote Gv(b)uΛ by uwΛ.

Proposition 6.5 ([K3, Proposition 4.1]). (1) Let Gv(b)uwΛ 6= 0, for b ∈ B(∞).
Then Gv(b)uwΛ = Gv(b′)uΛ, for some b′ ∈ B(∞).

(2) If Gv(b)uwΛ = Gv(b′)uwΛ 6= 0, for b, b′ ∈ B(∞), then b = b′.

Let (Lv(Λ), B(Λ)) be the crystal basis of the integrable highest weight module
Uv(g)uΛ. We have {Gv(b) | b ∈ B(Λ)} = {Gv(b)uΛ | b ∈ B(∞)} \ {0}. Then the
following holds by [K3, (4.1)].

Lemma 6.6. {Gv(b) | b ∈ Bw(Λ)} is a basis of U−
v (g)uwΛ.

Lemma 6.7. {Gv(b) | b ∈ Bw(Λ)} = {Gv(b)uwΛ | b ∈ B(∞)} \ {0}.

Proof. Suppose that b ∈ Bw(Λ). Then, Lemma 6.6 implies that we may write

Gv(b) =
∑

b′∈B(∞)

fb′Gv(b
′)uwΛ,

for some fb′ ∈ Q(v). Then Proposition 6.5(1) asserts that each nonzero Gv(b′)uwΛ

is of the form Gv(b”)uΛ, for some b” ∈ B(∞). Therefore, Gv(b) = Gv(b′)uwΛ, for
some b′ ∈ B(∞).

Suppose that Gv(b)uwΛ 6= 0, for some b ∈ B(∞). Then Gv(b)uwΛ = Gv(b
′), for

some b′ ∈ B(Λ), by Proposition 6.5(1) again. Since

Gv(b′) = Gv(b)uwΛ ∈ U−
v (g)uwΛ,

Lemma 6.6 implies that b′ ∈ Bw(Λ). �

Proposition 6.8. Assume that there exists a sequence

w1 ≥ w2 ≥ · · · ≥ wh = w.

Then

uw1Λ ⊗ · · · ⊗ uwhΛ + vLv(Λ)⊗h ∈ Bw(hΛ) ⊂ B(hΛ) ⊂ B(Λ)⊗h.

Proof. The proof is by induction on h. When h = 1, uwΛ + vLv(Λ) ∈ Bw(Λ) by
Lemma 6.7, so there is nothing to prove. Suppose that h > 1. By the induction
hypothesis, we may assume that

uw1Λ ⊗ · · · ⊗ uwh−1Λ + vLv(Λ)⊗(h−1) ∈ Bwh−1((h− 1)Λ) ⊂ Bw((h− 1)Λ).

This and Lemma 6.7 imply that there exists b ∈ B(∞) such that

uw1Λ ⊗ · · · ⊗ uwh−1Λ + vLv(Λ)⊗(h−1) = Gv(b)u(h−1)wΛ + vLv(Λ)⊗(h−1).
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Consider Gv(b)(uhwΛ). As Gv(b)(uhwΛ) = 0 or Gv(b)(uhwΛ) = Gv(b′)uhΛ, for some
b′ ∈ B(∞), by Proposition 6.5(1), we have

Gv(b)(u(h−1)wΛ ⊗ uwΛ) = Gv(b)(uhwΛ) ∈ Lv(Λ)⊗h.

If we view Lv(Λ)⊗h as a g
⊗h-crystal lattice and consider its weight decomposition,

(Gv(b)u(h−1)wΛ) ⊗ uwΛ is one of the weight components of Gv(b)(uhwΛ). Thus

(Gv(b)u(h−1)wΛ) ⊗ uwΛ ∈ Lv(Λ)⊗h.

As (Gv(b)u(h−1)wΛ) ⊗ uwΛ 6∈ vLv(Λ)⊗h because

uw1Λ ⊗ · · · ⊗ uwh−1Λ −Gv(b)u(h−1)wΛ ∈ vLv(Λ)⊗(h−1),

we may conclude that Gv(b)(uhwΛ) 6= 0 and

uw1Λ ⊗ · · · ⊗ uwhΛ + vLv(Λ)⊗h = Gv(b)(u(h−1)wΛ ⊗ uwΛ) + vLv(Λ)⊗h.

On the other hand, Lemma 6.7 implies

Gv(b)(u(h−1)wΛ ⊗ uwΛ) + vLv(Λ)⊗h = Gv(b)uhwΛ + vLv(Λ)⊗h ∈ Bw(hΛ).

Thus we have proved

uw1Λ ⊗ · · · ⊗ uwhΛ + vLv(Λ)⊗h ∈ Bw(hΛ).

�

Corollary 6.9. Let w ∈W . If there exists a sequence w1 ≥ w2 ≥ · · · ≥ wh ≥ w in

W such that νi = wi∅m, for 1 ≤ i ≤ h, then

ν1 ⊗ · · · ⊗ νh ∈ Bw(hΛm) ⊂ B(hΛm) ⊂ B(Λm)⊗h.

Define the Q(v)-linear anti-involution ∗ on U−
v (g) by f∗

i = fi. It preserves the
crystal lattice of U−

v (g) [K2, Proposition 5.2.4]. Then, as in [K2, Corollary 6.1.2],
(G(b)∗, G(b)∗) ≡ (G(b), G(b)) ≡ 1 modulo vZ[v] implies G(b)∗ = ±G(b∗), for some
b∗ ∈ B(∞). Now, it is proved in [K3, Theorem 2.1.1] that the minus sign does not
occur. To summarize, we have the following.

Proposition 6.10.

(1) B(∞)∗ = B(∞).
(2) Gv(b

∗) = Gv(b)∗, for b ∈ B(∞).

Next let Ũv(g) be the modified quantized enveloping algebra. Namely,

Ũv(g) =
⊕

Λ∈P

Uv(g)aΛ

such that vhaΛ = aΛv
h = vΛ(h)aΛ, aΛei = eiaΛ−αi

, aΛfi = fiaΛ+αi
and aΛaΛ′ =

δΛΛ′aΛ. Define the Q(v)-linear anti-involution ∗ by

(vh)∗ = v−h, e∗i = ei, f∗
i = fi, a∗Λ = a−Λ.

Lusztig constructed global bases for tensor products of integrable highest weight
and lowest weight Uv(g)-modules [L, 24.3], and showed that their inverse limits

exist in Ũv(g). Thus we have the crystal basis of Ũv(g) [L, 25.2]. We denote the
crystal by

B(Ũv(g)) =
⊔

Λ∈P

B(Uv(g)aΛ).

The global basis of Ũv(g) is also denoted by {Gv(b) | b ∈ B(Ũv(g))}.
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Theorem 6.11 ([K4, Theorem 3.1.1]). Let Λ be an integral weight. We choose

dominant integral weights Λ+ and Λ− such that Λ = Λ+ − Λ−. Then combining

two embeddings

B(Λ+) ⊂ B(∞) ⊗ TΛ+ , B(−Λ−) ⊂ T−Λ− ⊗B(−∞)

and TΛ+ ⊗ T−Λ− = TΛ, we have a strict embedding of crystals

B(Λ+) ⊗B(−Λ−) ⊂ B(∞) ⊗ TΛ ⊗B(−∞).

By taking the direct limit, we have

B(Uv(g)aΛ) ' B(∞) ⊗ TΛ ⊗B(−∞).

In the remainder of this discussion, we identify B(Uv(g)aΛ) with B(∞) ⊗ TΛ ⊗
B(−∞). The following theorem generalizes Proposition 6.10.

Theorem 6.12 ([K4, Theorem 4.3.2, Corollary 4.3.3]).

(1) B(Ũv(g))∗ = B(Ũv(g)), and if b = b1 ⊗ tΛ ⊗ b2 ∈ B(Ũv(g)) then

b∗ = b∗1 ⊗ t−Λ−wt(b1)−wt(b2) ⊗ b∗2.

(2) Gv(b
∗) = Gv(b)∗, for b ∈ B(Ũv(g)).

Now we define, for b ∈ B(Ũv(g)),

ε∗i (b) = εi(b
∗), ϕ∗

i (b) = ϕi(b
∗), wt∗(b) = wt(b∗),

ẽ∗i b = (ẽib
∗)∗, f̃∗

i b = (f̃ib
∗)∗.

Then this defines another crystal structure on B(Ũv(g)), which is called the star
crystal structure. The star crystal structure is compatible with the original crystal
structure on B(Ũv(g)) in the following sense.

Theorem 6.13 ([K4, Theorem 5.1.1]). ẽ∗i and f̃∗
i are strict morphisms of crystals.

Using the star crystal structure, we can define another Weyl group action on
B(Ũv(g)). We denote the action by w∗b, for w ∈W and b ∈ B(Ũv(g)).

Definition 6.14. Let B be a normal crystal. An element b ∈ B of weight Λ is

called extremal if there exists a subset {bw}w∈W of B such that

(i) bw = b if w = 1.

(ii) If wΛ(hi) ≥ 0 then ẽibw = 0 and f̃max
i bw = bsiw.

(iii) If wΛ(hi) ≤ 0 then f̃ibw = 0 and ẽmax
i bw = bsiw.

When B = B(Λ) for a dominant integral weight Λ, this is a natural crystal
analogue of extremal weight vectors in the highest weight module Uv(g)uΛ.

Lemma 6.15. Let Λ be dominant integral. Define bw = uwΛ +vLv(Λ) ∈ B(Λ), for

w ∈ W .

(1) The set of extremal elements of B(Λ) coincides with {bw}w∈W .

(2) {uwΛ}w∈W are extremal vectors. That is, we have the following.

(i) If wΛ(hi) ≥ 0 then eiuwΛ = 0 and f
(wΛ(hi))
i uwΛ = usiwΛ.

(ii) If wΛ(hi) ≤ 0 then fiuwΛ = 0 and e
(−wΛ(hi))
i uwΛ = usiwΛ.

(3) If siw < w and b ∈ B(∞) satisfies Gv(b)uwΛ 6= 0 then ε∗i (b) = 0.
(4) Suppose that siw < w and b ∈ B(∞) satisfies ε∗i (b) = 0. Then

Gv(b)uwΛ + vLv(Λ) = Gv(f̃∗
i

−wΛ(hi)
b)usiwΛ + vLv(Λ).
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Proof. (1) and (2) are well-known, and we only prove (3) and (4). Note that siw <
w implies wΛ(hi) ≤ 0. Thus fiuwΛ = 0 by (2). If εi(b

∗) > 0 then Gv(b∗) ∈ fiU
−
v (g).

Thus Gv(b) ∈ U−
v (g)fi by Proposition 6.10. Then Gv(b)uwΛ = 0, which contradicts

our assumption. We have proved ε∗i (b) = 0.

To prove (4), note that siwΛ(hi) = −wΛ(hi) ≥ 0 and f
(−wΛ(hi))
i usiwΛ = uwΛ by

(2). Now, εi(b
∗) = 0 implies that

f̃
−wΛ(hi)
i Gv(b∗) = f

(−wΛ(hi))
i Gv(b∗).

Hence, we have

(

f̃∗
i

−wΛ(hi)
Gv(b)

)

usiwΛ = Gv(b)f
(−wΛ(hi))
i usiwΛ = Gv(b)uwΛ.

Thus Gv(f̃∗
i

−wΛ(hi)
b)usiwΛ + vLv(Λ) = Gv(b)uwΛ + vLv(Λ) follows. �

Definition 6.16. Suppose that Λ is dominant integral. For w ∈ W , we define

B(wΛ) = {b ∈ B(Uv(g)awΛ) | b∗ is extremal}.

We identify B(wΛ) with a subcrystal of B(∞) ⊗ TwΛ ⊗ B(−∞) through the
crystal isomorphism given in Theorem 6.11. As the property that b∗ is extremal is
stable under ẽi and f̃i, if we define IwΛ to be the subspace of Uv(g)awΛ spanned by
{Gv(b) | b 6∈ B(wΛ)} then it is a Uv(g)-submodule of Uv(g)awΛ. The Uv(g)-module
Vv(wΛ) = Uv(g)awΛ/IwΛ is Kashiwara’s extremal weight module.

Theorem 6.17 ([K4, Proposition 8.2.2]). Suppose that Λ is dominant integral.

(1) Vv(wΛ) is an integrable Uv(g)-module.

(2) B(wΛ) is the crystal graph of Vv(wΛ).
(3) The map b 7→ w∗b, for b ∈ B(Λ), defines an isomorphism of crystals

B(Λ) ' B(wΛ).

As Vv(wΛ) is generated by the extremal vector of weight wΛ, and integrable,
Vv(wΛ) with w = 1 is the integrable highest weight module Uv(g)uΛ. Hence B(wΛ)
with w = 1 is nothing but B(Λ), and there is no conflict in the notation.

Fix i and let Zi be the polyhedral realization of B(∞) as before. If b ∈ B(∞)
corresponds to (· · · , 0, 0, ar, · · · , a2, a1) ∈ Zi, then the integers ak are determined
by

b∗ = f̃a1

i1
f̃a2

i2
· · · f̃ar

ir
u∞

such that εik
(f̃

ak+1

ik+1
f̃

ak+2

ik+2
· · ·u∞) = 0, for all k. See [NZ, (2.35), (2.36)].

Define Sh : B(∞) ⊗ TΛ ⊗B(−∞) → B(∞) ⊗ ThΛ ⊗B(−∞) by

Sh(b1 ⊗ tΛ ⊗ b2) = Sh(b1) ⊗ thΛ ⊗ Sh(b2).

This is also a crystal morphism of amplitude h.
The next results are proved in [NS1, Proposition 3.2, 3.5] in a slightly different

manner.

Lemma 6.18.

(1) Let b ∈ B(∞). Then Sh(b)∗ = Sh(b∗), for all h.

(2) Let b ∈ B(Ũv(g)). Then Sh(b)∗ = Sh(b∗), for all h.
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Proof. (1) We fix a polyhedral realization Zi of B(∞) and denote by

(. . . , 0, 0, ar, . . . , a2, a1)

the element which corresponds to b. Then Sh(b) corresponds to

(. . . , 0, 0, har, . . . , ha2, ha1)

by Proposition 5.11. Thus, we have

Sh(b)∗ = f̃ha1

i1
f̃ha2

i2
· · · f̃har

ir
u∞ = f̃ha1

i1
f̃ha2

i2
· · · f̃har

ir
Sh(u∞)

= f̃ha1

i1
f̃ha2

i2
· · · f̃

har−1

ir−1
Sh(f̃ar

ir
u∞) = · · · · · · = Sh(f̃a1

i1
f̃a2

i2
· · · f̃ar

ir
u∞).

Thus, Sh(b)∗ = Sh(b∗) as desired.
(2) Let b = b′ ⊗ tΛ ⊗ b′′. Then Sh(b)∗ is equal to

(

Sh(b′) ⊗ thΛ ⊗ Sh(b′′)
)∗

= Sh(b′)∗ ⊗ th(−Λ−wt(b′)−wt(b′′)) ⊗ Sh(b′′)∗.

Since Sh(b∗) = Sh((b′)∗)⊗ th(−Λ−wt(b′)−wt(b′′)) ⊗Sh((b′′)∗), Sh(b)∗ = Sh(b∗) follows
by (1). �

Lemma 6.19. Let b ∈ B(Ũv(g)). If b∗ is extremal, so is Sh(b)∗.

Proof. By the definition of tensor product, we have

εi(b1 ⊗ tΛ ⊗ b2) = max(εi(b1), εi(b2) − (Λ + wt(b1))(hi)),

ϕi(b1 ⊗ tΛ ⊗ b2) = max(ϕi(b1) + (Λ + wt(b2))(hi), ϕi(b2)).

Suppose that there exists {bw = b′w ⊗ t−wΛ ⊗ b′′w}w∈W such that

(i) b∗w = (b′w)∗ ⊗ twΛ−wt(b′w)−wt(b′′w) ⊗ (b′′w)∗ = b∗ if w = 1.

(ii) If wΛ(hi) ≥ 0 then ẽib
∗
w = 0 and f̃max

i b∗w = b∗siw.

(iii) If wΛ(hi) ≤ 0 then f̃ib
∗
w = 0 and ẽmax

i b∗w = b∗siw.

We want to show that {Sh(bw)∗}w∈W satisfies conditions (i) to (iii) above. As (i) is
obvious, we prove (ii) and (iii). Suppose that wΛ(hi) ≥ 0. Then ẽib

∗
w = 0 implies

εi(b
∗
w) = max(εi((b

′
w)∗), εi((b

′′
w)∗) + (−wΛ + wt(b′′w))(hi)) = 0.

By Lemma 6.18, we have

εi(Sh(bw)∗) = εi(Sh((b′w)∗) ⊗ th(wΛ−wt(b′w)−wt(b′′w)) ⊗ Sh((b′′w)∗))

= max(hεi((b
′
w)∗), hεi((b

′′
w)∗) + h(−wΛ + wt(b′′w))(hi)).

Thus εi(Sh(bw)∗) = hεi(b
∗
w) = 0 and ẽiSh(bw)∗ = 0 follows. By a similar computa-

tion, we have ϕi(Sh(bw)∗) = hϕi(b
∗
w), which implies that

f̃max
i Sh(bw)∗ = f̃

hϕi(b
∗

w)
i Sh(bw)∗ = f̃

hϕi(b
∗

w)
i Sh(b∗w)

= Sh(f̃
ϕi(b

∗

w)
i b∗w) = Sh(b∗siw) = Sh(bsiw)∗.

Suppose that wΛ(hi) ≤ 0. Then, by similar arguments, we have f̃iSh(bw)∗ = 0 and
ẽmax

i Sh(bw)∗ = Sh(bsiw)∗. �

Let Λ be dominant integral, w ∈W . Since B(wΛ) ' B(Λ) by Theorem 6.17(3),
we have a unique crystal morphism B(wΛ) → B(hwΛ) of amplitude h, which we
also denote by Sh. The following corollary generalizes Proposition 5.12.
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Corollary 6.20. Let Λ be dominant integral, w ∈W . Then we have the following

commutative diagram.

B(wΛ)
Sh−→ B(hwΛ)

∩ ∩

B(∞) ⊗ TwΛ ⊗B(−∞)
Sh−→ B(∞) ⊗ ThwΛ ⊗B(−∞)

We need two formulas. In the lemma below, (1) is taken from [K4, (3.1.1)] and
(2) is taken from [K6, Appendix].

Lemma 6.21.

(1) Let b = b1 ⊗ tΛ ⊗ b2 ∈ B(Ũv(g)). Then Gv(b) ∈ Ũv(g) equals Gv(b1)Gv(b2)aΛ

plus the linear combination
∑

XiYiaΛ, where Xi ∈ U−
v (g)−α and Yi ∈ U+

v (g)β such

that ht(α) < ht(wt(b1)) and ht(β) < ht(wt(b2)) respectively. In particular,

Gv(b1 ⊗ tΛ ⊗ u−∞) = Gv(b1)aΛ.

(2) Let b = b1 ⊗ tΛ ⊗ u−∞ and suppose that b∗ is extremal. Then

s∗i b =

{

f̃∗
i

−Λ(hi)
b1 ⊗ tsiΛ ⊗ u−∞ (if ε∗i (b) = 0.)

ẽ∗i
max

b1 ⊗ tsiΛ ⊗ ẽ∗i
Λ(hi)−ε∗i (b1)

u−∞ (if ϕ∗
i (b) = 0.)

Proposition 6.22. Suppose that Λ is dominant integral.

(1) If b ∈ Bw(Λ) then w∗b ∈ B(∞) ⊗ twΛ ⊗ u−∞.

(2) Under the isomorphism B(Λ) ' B(wΛ) given by b 7→ w∗b, Bw(Λ) may be iden-

tified with

{b ∈ B(∞) ⊗ twΛ ⊗ u−∞ | b∗ is extremal}.

Proof. (1) We identify the extremal weight module Vv(Λ) with the highest weight
module Uv(g)uΛ as before. Write Gv(b) = Gv(b

′)uΛ in Uv(g)uΛ. As

Gv(b
′ ⊗ tΛ ⊗ u−∞) = Gv(b

′)aΛ

by Lemma 6.21(1), we have b = b′⊗ tΛ⊗u−∞ under the identification of the crystal
of the highest weight module Uv(g)uΛ with B(Λ) which is defined by the extremal
weight module Vv(Λ).

Suppose now that b ∈ Bw(Λ). Then there exists b1 ∈ B(∞) such that Gv(b) =
Gv(b1)uwΛ by Lemma 6.7. Let w = si1 · · · si`

be a reduced expression. Then
Lemma 6.15(3),(4) imply that

Gv(b) + vLv(Λ) = Gv(f̃∗
i`

a`
· · · f̃∗

i1

a1
b1)uΛ + vLv(Λ),

where ak = −sik
· · · si`

Λ(hik
) = sik+1

· · · si`
Λ(hik

), such that

ε∗ik+1
(f̃∗

ik

ak
· · · f̃∗

i1

a1
b1) = εik+1

(f̃ak

ik
· · · f̃a1

i1
b∗1) = 0,

for 0 ≤ k < `. This implies Gv(b) = Gv(f̃∗
i`

a`

· · · f̃∗
i1

a1
b1)uΛ. Thus, by the first

paragraph, we have

b = f̃∗
i`

a`

· · · f̃∗
i1

a1
b1 ⊗ tΛ ⊗ u−∞.

We show by downward induction on k that

s∗ik+1
· · · s∗i`

b = f̃∗
ik

ak

· · · f̃∗
i1

a1
b1 ⊗ tsik+1

···si`
Λ ⊗ u−∞.

If k = ` there is nothing to prove. Suppose that the equation holds for k. As
s∗ik+1

· · · s∗i`
b ∈ B(sik+1

· · · si`
Λ) by Theorem 6.17(3), sik+1

· · · si`
b∗ is extremal. As

wt(sik+1
· · · si`

b∗)(hik
) = −sik+1

· · · si`
Λ(hik

) = −ak ≤ 0,
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we have ϕ∗
ik

(s∗ik+1
· · · s∗i`

b) = 0. Thus Lemma 6.21(2) implies

s∗ik
· · · s∗i`

b = ẽ∗ik

max
f̃∗

ik

ak

· · · f̃∗
i1

a1
b1 ⊗ tsik

···si`
Λ ⊗ ẽ∗ik

ak−εik
(f̃

ak
ik

···f̃
a1
i1

b∗1)
u−∞.

Since the formula ε∗ik+1
(f̃∗

ik

ak

· · · f̃∗
i1

a1
b1) = 0 implies εik

(f̃ak

ik
· · · f̃a1

i1
b∗1) = ak if we

replace k with k− 1 in the formula, we have the equation for k− 1. As a result, we
have w∗b = b1 ⊗ twΛ ⊗ u−∞ ∈ B(∞) ⊗ twΛ ⊗ u−∞.

(2) We only have to show that if b = b1 ⊗ twΛ ⊗ u−∞ ∈ B(wΛ) then we have
(w−1)∗b ∈ Bw(Λ). Define ak = sik+1

· · · si`
Λ(hik

). We show by induction on k that

s∗ik
· · · s∗i1b = f̃∗

ik

ak

· · · f̃∗
i1

a1
b1 ⊗ tsik+1

···si`
Λ ⊗ u−∞.

If k = 0 there is nothing to prove. Suppose that the equation holds for k. As
sik

· · · si1b
∗ is extremal and

wt(sik
· · · si1b

∗)(hik+1
) = −sik+1

· · · si`
Λ(hik+1

) = ak+1 ≥ 0,

we have εik+1
(sik

· · · si1b
∗) = 0. Thus Lemma 6.21(2) implies the equation for k+1.

As a result, we have

(w−1)∗b = f̃∗
i`

a`

· · · f̃∗
i1

a1
b1 ⊗ tΛ ⊗ u−∞.

Now, ε∗ik+1
(f̃∗

ik

ak

· · · f̃∗
i1

a1
b1) = 0, for 0 ≤ k < `, because

0 = ε∗ik+1
(s∗ik

· · · s∗i1b) = ε∗ik+1
(f̃∗

ik

ak

· · · f̃∗
i1

a1
b1 ⊗ tsik+1

···si`
Λ ⊗ u−∞)

≥ ε∗ik+1
(f̃∗

ik

ak
· · · f̃∗

i1

a1
b1) ≥ 0.

Thus Lemma 6.15(4) shows that

Gv(b1)uwΛ = Gv(f̃∗
i`

a`

· · · f̃∗
i1

a1
b1)uΛ = Gv((w−1)∗b).

Therefore, we have (w−1)∗b ∈ Bw(Λ) by Lemma 6.7. �

The following is a theorem proved by Kashiwara and Sagaki independently. The
proof for the first equality works for general dominant integral weights.

Theorem 6.23. Suppose w ∈W/Wm. Then

Bw(Λm) = {λ ∈ B(Λm) | f(λ) ≥ wΛm} = {λ ∈ B(Λm) | floor(λ) ⊃ w∅m}.

Proof. If we write floor(λ) = u∅m, for u ∈ W/Wm, then f(λ) = wt(floor(λ)) =
uΛm, and f(λ) ≥ wΛm if and only if u ≥ w. Thus, the second equality follows from
Proposition 4.4. We prove the first equality.

Suppose that h is sufficiently divisible and write Sh(λ) = ν1 ⊗ · · · ⊗ νh, for λ
with f(λ) ≥ wΛm. Then there exists a sequence w1 ≥ · · · ≥ wh ≥ w in W such
that νi = wi∅m, for 1 ≤ i ≤ h. By Corollay 6.9, we have Sh(λ) ∈ Bw(hΛm). We
want to show λ ∈ Bw(Λm). Let us consider the crystal morphism of amplitude h:

B(∞) ⊗ TwΛm
⊗B(−∞) −→ B(∞) ⊗ ThwΛm

⊗B(−∞).

Then it induces Sh : B(wΛm) → B(hwΛm) by Corollary 6.20.
Write w∗λ = b1 ⊗ twΛm

⊗ b2 ∈ B(wΛm). Note that we have Sh(w∗λ) = w∗Sh(λ)
by the uniqueness of the crystal morphism of amplitude h given in Proposition 5.12.
Since Sh(λ) ∈ Bw(hΛm), we have

Sh(b1) ⊗ thwΛ ⊗ Sh(b2) = Sh(w∗λ) = w∗Sh(λ) ∈ B(∞) ⊗ thwΛm
⊗ u−∞
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by Proposition 6.22(2), which implies Sh(b2) = u−∞. Since Sh : B(∞) → B(∞)
is injective by Proposition 5.11, we have w∗λ = b1 ⊗ twΛm

⊗ u−∞. Therefore,
Proposition 6.22(2) implies that λ ∈ Bw(Λm).

Next suppose that λ ∈ Bw(Λm). Then, we have Sh(λ) ∈ Bw(hΛm) by the
similar argument. Take sufficiently divisible h and write Sh(λ) = µ1 ⊗ · · · ⊗ µh, for
µ1 ≥ · · · ≥ µh. Then Sh(λ) ∈ Bw(hΛm) implies that

Gv(µ1 ⊗ · · · ⊗ µh) ∈ U−
v (g)(uwΛm

⊗ · · · ⊗ uwΛm
) ⊂ Vv(Λm) ⊗ · · · ⊗ Vv(Λm).

Expand Gv(µ1⊗· · ·⊗µh) in the basis {Gv(ν1)⊗· · ·⊗Gv(νh) | ν1, . . . , νh ∈ B(Λm)}.
If Gv(ν1)⊗ · · · ⊗Gv(νh) appears in the expansion then ν1, . . . , νh ∈ Bw(Λm), since

U−
v (g)(uwΛm

⊗ · · · ⊗ uwΛm
) ⊂ U−

v (g)uwΛm
⊗ · · · ⊗ U−

v (g)uwΛm
.

In particular, we have µ1, . . . , µh ∈ Bw(Λm). Write µh = y∅m, for y ∈W/Wm, and
apply Proposition 4.2(4). Then y ≥ w and f(λ) = wt(µh) ≥ wΛm follows. �

7. A property of Base

We write λ ≤ µ for λ ⊂ µ in this and the next sections.
Let λ ∈ B(Λm) be λ = (λ1, λ2, . . . ). We denote µ = (λ2, λ3, . . . ) and write

λ = {λ1} ∪ µ. In this section we shall show base(λ) = base({λ1} ∪ base(µ)).

Definition 7.1. Let J ⊂ Z and x ∈ Z. Then we denote J ∩ Z≤x by J≤x.

Lemma 7.2. Let λ ∈ B(Λm), J the corresponding set of beta numbers of charge

m, j0 = maxJ . Write K = J≤j0−1. Define t = min{i ≥ 0 | downi(K) = base(K)}.
(1) Suppose that j0 − e 6∈ J . Then the partition associated with base(K) ∪ {j0} is

e-restricted and base(J) = base(base(K) ∪ {j0}).
(2) Suppose that j0 − e ∈ J and fix 0 ≤ s ≤ t. If there exists no 0 ≤ i < s such that

j0 − e = minW (downi(K)) < minU(downi(K)) ≤ j0 − 1,

then downs(J) = downs(K) ∪ {j0}. Furthermore,

(i) if s < t then U(downs(J)) 6= ∅ and minU(downs(J)) = minU(downs(K)),
(ii) if s = t then the partition associated with base(K)∪{j0} is e-restricted and

base(J) = base(base(K) ∪ {j0}).

Proof. Define Ji = downi(K ∪ {j0}) and Ki = downi(K), for 0 ≤ i ≤ t.
(1) We prove Ji = Ki ∪ {j0}, j0 − e 6∈ Ji and maxKi ≤ j0 − 1 by induction on i.
When i = 0, there is nothing to prove. Suppose that 0 < i < t and that the

claim holds for i. We want to show that Ji+1 = Ki+1 ∪ {j0}, j0 − e 6∈ Ji+1 and
maxKi+1 ≤ j0 − 1. As i < t, we have U(Ki) 6= ∅ and

U(Ki) ⊂ U(Ji) = U(Ki ∪ {j0}) ⊂ U(Ki) ∪ {j0}.

As minU(Ki) ≤ maxKi ≤ j0−1 we have minU(Ji) = minU(Ki), which we denote
by p′. Hence p′ ≤ j0 − 1 and p′ − e 6= j0 − e, which implies j0 − e 6∈ Ji+1. We
show that minW (Ji) = minW (Ki). Let q′ = minW (Ji). As q′ ≤ p′ ≤ j0 − 1
and q′ ∈ Ji = Ki ∪ {j0}, we have q′ ∈ Ki. If q′ = p′ then q′ ∈ W (Ki). If
q′ < p′ then q′ + e 6∈ Ki because q′ + e 6∈ Ji. Thus we also have q′ ∈ W (Ki).
Suppose that there exists p′ − e < x < q′ such that x ∈ Ki and x + e 6∈ Ki. If
x+ e 6∈ Ji then the minimality of q′ is contradicted. If x + e ∈ Ji then x ∈ Ji and
x+ e = j0, which contradicts the induction hypothesis j0 − e 6∈ Ji. We have proved
minW (Ki) = minW (Ji). Therefore, maxKi+1 ≤ maxKi ≤ j0 − 1 and

Ji+1 = down(Ji) = down(Ki) ∪ {j0} = Ki+1 ∪ {j0}.
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Now, Jt = base(K) ∪ {j0} is associated with an e-restricted partition by Lemma
2.7(2), and base(J) = base(base(K) ∪ {j0}) follows.

(2) We prove that Ji = Ki ∪ {j0} and maxKi ≤ j0 − 1, for 0 ≤ i ≤ s. Suppose
that 0 < i < s and that the claim holds for i. As U(Ki) 6= ∅, we have U(Ji) 6= ∅
and

p′ = minU(Ji) = minU(Ki) ≤ j0 − 1

as before. Let q′ = minW (Ji). By the same argument as in (1), we also have
q′ ∈W (Ki). Suppose that there is p′−e < x < q′ such that x ∈ Ki and x+e 6∈ Ki.
If x+ e 6∈ Ji then the minimality of q′ is contradicted. If x+ e ∈ Ji then x+ e = j0.
Thus

j0 − e = minW (Ki) < q′ ≤ p′ = minU(Ki) ≤ j0 − 1,

which contradicts our assumption. Hence we have minW (Ki) = minW (Ji) and
Ji+1 = Ki+1 ∪ {j0} follows. We also have maxKi+1 ≤ maxKi ≤ j0 − 1. By setting
i = s, we obtain downs(J) = downs(K) ∪ {j0}.

If s < t then U(Ks) 6= ∅ and we have U(Js) 6= ∅ and minU(Js) = minU(Ks) by
the same argument as above. If s = t then Jt = base(K) ∪ {j0} is associated with
an e-restricted partition and we have base(J) = base(base(K) ∪ {j0}). �

Let λ ∈ B(Λm), J , j0, K and t as above.
In the rest of this section we assume that j0 − e ∈ J and that there exists

0 ≤ a < t such that U(downa(J)) 6= ∅ and

(i) downi(J) = downi(K) ∪ {j0}, for 0 ≤ i ≤ a.
(ii) p′′ = minU(downa(K)) and q′′ = minW (downa(K)) satisfy

p′′ = minU(downa(J)), q′′ = j0 − e < p′′ ≤ j0 − 1.

We also define p′ = minU(downa(J)) and q′ = minW (downa(J)). Note that
q′′ = j0 − e 6∈ W (downa(J)) by p′ = p′′ 6= q′′ and downa(J) = downa(K) ∪ {j0}.
Hence, q′ 6= q′′ and downa+1(J) 6= downa+1(K) ∪ {j0}. More precisely, we have

downa+1(K) = (downa+1(J) \ {j0, j0 − e}) ∪ {q′}.

Further, q′ > q′′ since q′ ≤ q′′ would imply q′ < p′ and q′ ∈ W (downa(K)), which
contradicts q′′ = minW (downa(K)). Thus we must have

j0 − e < q′ ≤ p′ ≤ j0 − 1.

We also have j0 − eZ≥0 ⊂ downa(J) and U(downa(J)) = U(downa(K)). In fact,
by j0 − e ∈ downa(K) ⊂ downa(J) and j0 − e < p′, j0 − ke ∈ downa(J), for k ≥ 1.
As j0 ∈ downa(J), we conclude that j0 − eZ≥0 ⊂ downa(J). Then

U(downa(K)) ⊂ U(downa(J)) ⊂ U(downa(K)) ∪ {j0}

implies U(downa(J)) = U(downa(K)).

Definition 7.3. Let x ∈ J .

(1) We define the runner index of x, which we denote by r(x), by

1 ≤ r(x) ≤ e and x+ eZ = j0 + r(x) + eZ.

(2) The layer level of x, which we denote by `(x), is defined by

`(x) = −
min{z ∈ j0 + eZ|z ≥ x} − j0

e
.
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The definitions are naturally understood on the abacus display which is adjusted
by j0. Namely, we display J on the abacus in such a way that j0 is on the rightmost
runner. Then the runner index is 1 to e from left to right, and x is `(x) rows higher
than j0 in this j0-adjusted abacus display.

Define b ≥ 1 by b = min{i ≥ 0 | base(J) = base(downa(J)) = downa+i(J)}, and,
this time, we define

Ji = downi(downa(J)) and Ki = downi(downa(K)),

for 0 ≤ i ≤ b. We set p′i = minU(Ji), q
′
i = minW (Ji), for 0 ≤ i < b. Note that we

have either `(p′i) = `(q′i) or `(p′i) = `(q′i) − 1. We also define p′′i = minU(Ki) and
q′′i = minW (Ki) if U(Ki) 6= ∅.

Definition 7.4. We say that 0 ≤ i < b is a reset point if `(p′i) = `(q′i) = 0.

As j0 − e < q0 ≤ p0 ≤ j0 − 1, i = 0 is a reset point.

Definition 7.5. U is the set of indices 0 ≤ i < b such that `(q′i) = `(p′i).

U is also the set of indices 0 ≤ i < b such that r(q′i) ≤ r(p′i). Now, we analyze
the relationship between Ji and Ki in detail. We start with an example.

Example 7.6. If q′ = p′ and

J0 :

×× ×× ××

× × ×

× ×

× ×

×

× ××

K0 :

×× ×× ××

× × ×

× ×

× ×

×

× ×

then K0 = J0 \ {j0} and 0 ∈ U . We compute Ji and Ki, for i > 0.

J1 :

×× ×× ××

× × ×

× ×

× ×

× ×

××

K1 :

×× ×× ××

× × ×

× ×

× ×

×

× ×

Thus, K1 = (J1 \ {j0, j0 − e}) t {q′0} and 1 ∈ U .

J2 :

×× ×× ××

× × ×

× ×

×× ×

×

××

K2 :

×× ×× ××

× × ×

× ×

××

×

× ×

Thus, K2 = (J2 \ {j0, j0 − e, j0 − 2e}) t {q′0, q
′
1} and 2 ∈ U .
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J3 :

×× ×× ××

× × ×

×× ×

× ×

×

××

K3 :

×× ×× ××

× × ×

××

××

×

× ×

Thus, K3 = (J3 \ {j0, j0 − e, j0 − 2e, j0 − 3e}) t {q′0, q
′
1, q

′
2} and 3 6∈ U .

J4 :

×× ×× ××

×× ×

×× ×

× ×

×

××

K4 :

×× ×× ××

×× ×

××

××

×

× ×

Thus, K4 = (J4 \ {j0, j0 − e, j0 − 2e, j0 − 3e}) t {q′0, q
′
1, q

′
2}. Note that i = 4 is a

reset point. We also have 4 ∈ U .

J5 :

×× ×× ××

×× ×

×× ×

× ×

××

×

K5 :

×× ×× ××

×× ×

××

××

× ×

×

Thus, K5 = (J5 \ {j0, j0 − e, j0 − 2e, j0 − 3e}) t {q′4, q
′
1, q

′
2} and 5 ∈ U .

J6 :

×× ×× ××

×× ×

×× ×

× ××

×

×

K6 :

×× ×× ××

×× ×

××

×× ×

×

×

Thus, K6 = (J6 \ {j0, j0 − e, j0 − 2e, j0 − 3e}) t {q′4, q
′
5, q

′
2} and 6 ∈ U .

J7 :

×× ×× ××

×× ×

×× ××

××

×

×

K7 :

×× ×× ××

×× ×

×× ×

× ×

×

×

Thus, K7 = (J7 \ {j0, j0 − e, j0 − 2e, j0 − 3e}) t {q′4, q
′
5, q

′
6} and 7 ∈ U .
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J8 :

×× ×× ××

×× ××

× ××

××

×

×

K8 :

×× ×× ××

×× ×

×× ×

× ×

×

×

We finish with K8 = (J8 \ {j0, j0 − e, j0 − 2e, j0 − 3e, j0 − 4e}) t {q′4, q
′
5, q

′
6, q

′
7}.

Lemma 7.7. Define p′b = p′b−1 − e. Then, for each 0 ≤ i ≤ b, there exist mi ≥ 0
and x0, . . . , xmi−1 ∈ Ki \ {p

′
i} such that U(Ji) = U(Ki) and

(a) j0 − eZ≥0 ⊂ Ji and maxJi = j0.
(b) Ki = (Ji \ {j0, j0 − e, . . . , j0 −mie}) t {x0, . . . , xmi−1}.
(c) If x ∈ Ji is such that r(x) ≤ r(p′i) then x 6∈ U(Ji) unless x = p′i.
(d) If x ∈ Ki is such that r(x) ≤ r(p′i) then x 6∈ U(Ki) unless x = p′i.
(e) `(xk) = k, for 0 ≤ k ≤ mi − 1.
(f) r(p′i) ≥ r(x0) ≥ · · · ≥ r(xmi−1).
(g) If there exists x ∈ Ji such that 1 ≤ `(x) ≤ mi and r(p′i) < r(x) < e then

(x + eZ) ∩ Z≤j0 ⊂ Ji.

(h) If j0−(k+1)e < x < xk, for some 0 ≤ k ≤ mi−1, then x 6∈ Ji and x 6∈ Ki.

Further, 1 ≤ m1 ≤ · · · ≤ mb.

Proof. m1 ≤ · · · ≤ mb follows from (a), (b) and (f) because p′′i = p′i 6∈ j0 + eZ
implies that elements cannot be added to Ki ∩ (j0 + eZ), only removed.
i = 0 is a reset point and we already know that the claims hold when i = 0;

m0 = 0 and (e), (f), (g) and (h) are vacant conditions. Let i1 be a reset point and
assume that the claims hold when i ≤ i1. Let i2 ≤ b− 1 be maximal such that p′i
decreases in the interval i1 ≤ i ≤ i2. We showed in section 2 that p′i+1 = p′i − e for
i1 ≤ i < i2 and that p′i2+1 > p′i1 if i2 + 1 < b. We show that the claims hold for
i1 ≤ i ≤ i2 + 1 and m1 ≤ · · · ≤ mi2+1. If i2 + 1 < b then i2 + 1 is a reset point
because `(p′i2+1) = 0 by p′i2+1 > p′i1 and `(q′i2+1) = 0 by (a) and (g) for i = i2 + 1.
The condition (g) for i = i2 + 1 is not vacant since we already know m1 = 1. We
repeat this process until b is reached.

As we will see in the proof below, three patterns appear in the interval i1 ≤ i ≤
i2 + 1. The first pattern occurs in the interval i1 ≤ i < i1 +mi1 , thus it does not
occur when i1 = 0, and we reach i = i2 + 1 when we are performing the second or
the third pattern. We will show that p′i2+1 − ke 6∈ Ji2+1, for 1 ≤ k ≤ mi2+1, when
i2 + 1 is a reset point. Hence, we may assume that p′i1 − ke 6∈ Ji1 , for 1 ≤ k ≤ mi1 ,
when the first pattern occurs at i = i1.

Let i = i1 + k. When k = 0, U(Ki1) = U(Ji1 ) 6= ∅ and we have x0, . . . , xm−1 ∈
Ki1 \ {p

′
i1} which satisfy (a) to (h), for m = mi1 . We want to show that i1 +m ≤ b

and that the claims hold for i1 ≤ i ≤ i1 + m. If m = 0 then there is nothing to
prove. Suppose that m > 0 and p′i1 − je 6∈ Ji1 , for 1 ≤ j ≤ m. Then x0 6= p′i1 and
(f) for i = i1 imply that r(xk) < r(p′i1 ), for 0 ≤ k ≤ m − 1. We shall show the

following (ȧ) to (ḣ), for 0 ≤ k ≤ m, by induction on k.

(ȧ) j0 − eZ≥0 ⊂ Ji1+k and maxJi1+k = j0.

(ḃ) Ki1+k = (Ji1+k \ {j0, j0 − e, . . . , j0 −me})t{q′i1 , . . . , q
′
i1+k−1, xk, . . . , xm−1}.

(ċ) If x ∈ Ji1+k is such that r(x) ≤ r(p′i1 ) then x 6∈ U(Ji1+k) unless x = p′i1+k.
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(ḋ) If x ∈ Ki1+k is such that r(x) ≤ r(p′i1 ) then x 6∈ U(Ki1+k) unless x = p′i1+k.
(ė) `(q′i1+j) = j, for 0 ≤ j ≤ k − 1.

(ḟ) r(p′i1 ) ≥ r(q′i1 ) ≥ · · · ≥ r(q′i1+k−1) ≥ r(xk) ≥ · · · ≥ r(xm−1).
(ġ) If there exists x ∈ Ji1+k such that 1 ≤ `(x) ≤ m and r(p′i1 ) < r(x) < e

then (x + eZ) ∩ J≤j0 ⊂ Ji1+k.

(ḣ) If `(x) = j and r(x) < r(q′i1+j), for some 0 ≤ j ≤ k − 1, or `(x) = j and
r(x) < r(xj), for some k ≤ j ≤ m− 1, then x 6∈ Ji1+k and x 6∈ Ki1+k.

If k ≤ m − 1 we also show p′i1 − je 6∈ Ji1+k, for k + 1 ≤ j ≤ m, i1 + k < b and
p′i1+k = p′i1 − ke.

Before proving these claims, we explain that these imply the desired claims
for i1 ≤ i ≤ i1 + m. First, r(xk) < r(p′i1 ), for 0 ≤ k ≤ m − 1, implies xj 6=
p′i1+k, p

′
i1+k − e, for k ≤ j ≤ m − 1. We also have q′i1+j 6= p′i1+k, p

′
i1+k − e, for

0 ≤ j ≤ k − 1. This follows from (ė) when 0 ≤ k ≤ m − 1 or i1 + m = b,
since p′i1+k = p′i1 − ke in these cases, and from r(p′i1+m) > r(p′i1 ) ≥ r(q′i1+j) when

i1 + m is a reset point. Second, if i1 + k < b then U(Ji1+k) = U(Ki1+k). In
fact, if p′i1+k = p′i1+k−1 − e then U(Ji1+k) = U(Ki1+k) = {p′i1+k} on runners

1, . . . , r(p′i1) by (ḃ), (ċ), (ḋ), q′i1+j 6= p′i1+k, p
′
i1+k − e, for 0 ≤ j ≤ k − 1, and xj 6=

p′i1+k, p
′
i1+k−e, for k ≤ j ≤ m−1. If p′i1+k > p′i1 then U(Ji1+k) = U(Ki1+k) = ∅ on

runners 1, . . . , r(p′i1) by (ċ), (ḋ) and r(p′i1+k) > r(p′i1 ). Ji1+k = Ki1+k on runners

r(p′i1) + 1, . . . , e− 1 by (ḃ) and (ḟ), and U(Ji1+k) = U(Ki1+k) = ∅ on runner e by

(ȧ), (ḃ) and (ḟ). Thus, U(Ji1+k) = U(Ki1+k) if i1 + k < b. If i1 +m = b then the
same proof shows that U(Kb) = ∅. (a) to (h) for i1 ≤ i ≤ i1 +m− 1 or i = i1 +m

when i1 + m = b clearly follows from (ȧ) to (ḣ). When i1 + m is a reset point,
U(Ji1+m) = U(Ki1+m) implies (c) and (d) for i = i1 +m. The other parts of (a)
to (h) are obvious.

Now we prove the claims. The claims hold when k = 0. Suppose that the claims
hold for k such that 0 ≤ k ≤ m − 1. Thus p′i1 − je 6∈ Ji1+k, for k + 1 ≤ j ≤ m,
i1 + k < b and p′i1+k = p′i1 − ke. If k + 1 ≤ m − 1 then p′i1 − je 6∈ Ji1+k+1, for
k + 2 ≤ j ≤ m, and p′i1 − (k + 1)e ∈ U(Ji1+k+1). Hence, i1 + k + 1 < b and
p′i1+k+1 < p′i1+k implies p′i1+k+1 = p′i1 − (k + 1)e.

As p′i1+k − e = p′i1 − (k + 1)e < x < xk, for x ∈ Ji1+k, implies x 6∈ W (Ji1+k) by

(ȧ), (ġ) and (ḣ), we have xk ≤ q′i1+k ≤ p′i1+k. As `(p′i1+k) = k and `(xk) = k, this
implies

`(q′i1+k) = k and r(q′i1+k) ≤ r(p′i1 ) < e.

Hence, (ȧ) and (ė) for k + 1 follow.
`(xk) = `(q′i1+k) and xk ≤ q′i1+k imply r(xk) ≤ r(q′i1+k). As r(xk+1) ≤ r(xk),

we have r(xk+1) ≤ r(q′i1+k). If k = 0 then we have proved (ḟ) for k + 1. If k ≥ 1
then we have to show r(q′i1+k) ≤ r(q′i1+k−1). Note that we have either r(q′i1+k−1) =

r(p′i1+k−1) or r(q′i1+k−1) < r(p′i1+k−1) by (ḟ). If r(q′i1+k−1) = r(p′i1+k−1) then we

have r(q′i1+j) = r(p′i1+j) and `(q′i1+j) = `(p′i1+j), for 0 ≤ j ≤ k − 1, by (ḟ). This

implies that q′i1+j = p′i1+j , for 0 ≤ j ≤ k − 1. Thus, Ji1+k−1 is obtained from Ji1

by moving the bead p′i1 up to p′i1+k−1 = q′i1+k−1. Hence,

q′i1+k−1 − e ∈ Ji1+k and q′i1+k−1 6∈ Ji1+k.

If r(q′i1+k−1) < r(p′i1+k−1) then q′i1+k−1 ∈ Ji1+k−1 implies q′i1+k−1 − e ∈ Ji1+k−1

by (ċ) for k − 1. Thus, q′i1+k−1 − e ∈ Ji1+k and q′i1+k−1 6∈ Ji1+k follow again.
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Therefore, q′i1+k−1 − e ∈W (Ji1+k) and we conclude

q′i1+k ≤ q′i1+k−1 − e.

Then, `(q′i1+k) = `(q′i1+k−1 − e) implies r(q′i1+k) ≤ r(q′i1+k−1 − e) = r(q′i1+k−1). We

have proved (ḟ) for k + 1. As r(q′i1+k) ≤ r(p′i1 ), (ġ) for k + 1 also follow.
Now U(Ji1+k) = U(Ki1+k) implies p′i1+k ∈ U(Ki1+k) and p′′i1+k = p′i1+k. Hence

it is clear that (ċ) and (ḋ) for k + 1 hold.
To show that q′′i1+k = xk, first suppose that

p′i1+k − e = p′i1 − (k + 1)e < x < j0 − (k + 1)e,

for x ∈ Ki1+k. Then x ∈ Ji1+k by (ḃ) and (ḟ), and x+ e ∈ Ji1+k by (ġ). Using (ḃ)

and (ḟ) again, we have x+ e ∈ Ki1+k and x 6∈W (Ki1+k). If

j0 − (k + 1)e < x < xk ,

then x 6∈ Ki1+k by (ḣ), and x 6∈ W (Ki1+k) again. We have proved that q′′i1+k ≥ xk.
To see that q′′i1+k = xk , it remains to show xk ∈W (Ki1+k).

Note that `(xk) = `(p′i1+k) and r(xk) ≤ r(pi1 ) = r(p′i1+k) imply that

p′i1+k − e < xk ≤ p′i1+k.

As xk ∈ Ki1+k, xk ∈ W (Ki1+k) follows when xk = p′i1+k. If xk < p′i1+k, we have
to show xk + e 6∈ Ki1+k. It is clear when k = 0. Suppose k ≥ 1 and xk + e ∈ Ki1+k.

Thus (ḣ) implies r(xk +e) ≥ r(q′i1+k−1). On the other hand, (ḟ) implies `(xk +e) =
`(q′i1+k−1) and r(xk + e) ≤ r(q′i1+k−1). Hence xk + e = q′i1+k−1 ∈ Ji1+k−1 follows.
As r(xk + e) ≤ r(p′i1+k−1), we have either xk ∈ Ji1+k−1 or xk + e = p′i1+k−1 by

(ċ) for k − 1. By (ḃ) for k − 1, xk ∈ Ji1+k−1 does not occur. xk + e = p′i1+k−1

implies xk = p′i1+k ∈ Ji1+k, which contradicts (ḃ). Therefore, xk + e 6∈ Ki1+k. We
have proved that xk ∈W (Ki1+k), and q′′i1+k = xk follows. In other words, we have
proved

Ki1+k+1 = (Ki1+k \ {xk}) t {p′i1+k+1}.

By Ji1+k+1 t {q′i1+k} = Ji1+k t {p′i1+k+1} and (b), Ki1+k+1 is equal to

(Ji1+k+1 \ {j0, . . . , j0 −me}) t {q′i1 , . . . , q
′
i1+k−1, q

′
i1+k, xk+1, . . . , xm−1}.

We have proved (ḃ) for k + 1.

Finally, to prove (ḣ) for k+1, we have to show that x 6∈ Ji1+k+1 and x 6∈ Ki1+k+1

when `(x) = k and r(x) < r(q′i1+k). If x ∈ Ji1+k+1 then x 6= p′i1+k−e, q
′
i1+k implies

x ∈ Ji1+k and x + e ∈ Ji1+k by x 6∈ W (Ji1+k). However, x + e 6∈ Ji1+k if k = 0,
and if k ≥ 1 then `(x + e) = k − 1 and r(x + e) < r(q′i1+k) ≤ r(q′i1+k−1) imply

x+e 6∈ Ji1+k by (ḣ). We have proved x 6∈ Ji1+k+1. If x ∈ Ki1+k+1 then x ∈ Ji1+k+1

or x = q′i1+k by (ḃ) for k + 1. As both do not occur, x 6∈ Ki1+k+1.
We have proved the desired claims for i1 ≤ i ≤ i1 +m. Note that we have also

proved that i1, . . . , i1 +m ∈ U .
Define m′ ≥ m by m′ = i2 − i1 if i1 +m, . . . , i2 ∈ U , and by

i1 +m, i1 +m+ 1, . . . , i1 +m′ ∈ U and i1 +m′ + 1 6∈ U,

otherwise. We want to show that the claims hold for i1 +m ≤ i ≤ i1 +m′ + 1. To
do this, we show, for m ≤ k ≤ m′ + 1, that p′′i1+j = p′i1+j , for 0 ≤ j ≤ k − 1, and

(ä) j0 − eZ≥0 ⊂ Ji1+k and maxJi1+k = j0.

(b̈) Ki1+k = (Ji1+k \ {j0, j0 − e, . . . , j0 − ke}) t {q′i1 , . . . , q
′
i1+k−1}.
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(c̈) If x ∈ Ji1+k is such that r(x) ≤ r(p′i1+k) then x 6∈ U(Ji1+k) unless x =
p′i1+k.

(d̈) If x ∈ Ki1+k is such that r(x) ≤ r(p′i1+k) then x 6∈ U(Ki1+k) unless x =
p′i1+k.

(ë) `(q′i1+j) = j, for 0 ≤ j ≤ k − 1.

(̈f) r(p′i1 ) ≥ r(q′i1 ) ≥ · · · ≥ r(q′i1+k−1).
(g̈) If there exists x ∈ Ji1+k such that 1 ≤ `(x) ≤ k and r(p′i1 ) < r(x) < e then

(x + eZ) ∩ J≤j0 ⊂ Ji1+k.

(ḧ) If j0 − (j + 1)e < x < q′i1+j , for some 0 ≤ j ≤ k − 1, then x 6∈ Ji1+k and
x 6∈ Ki1+k.

By the same argument as before, these claims imply the desired claims for i1 +m ≤
i ≤ i1 +m′ + 1. Suppose that the claims hold for k such that m ≤ k ≤ m′. Thus
p′i1+k = pi1 − ke and, by definition, i1 + k < b. i1 + k ∈ U implies `(q′i1+k) =
`(p′i1+k) = k and r(q′i1+k) ≤ r(p′i1) < e. Thus (ä) and (ë) for k + 1 follow. If

m = 0 and k = m then (̈f) for k + 1 is clear. Otherwise, k ≥ 1 and we have either
r(q′i1+k−1) = r(p′i1+k−1) or r(q′i1+k−1) < r(p′i1+k−1) by i1 + k − 1 ∈ U . Now the
rest of the proof is entirely similar to the previous one. The only difference is that
we prove q′′i1+k = j0 − (k + 1)e. To prove this, suppose that p′i1+k − e < x ≤ p′i1+k.
As Ji1+k = Ki1+k on runners r(p′i1 ) + 1, . . . , e − 1, x ∈ W (Ki1+k) implies x ≥

j0 − (k + 1)e. As j0 − (k + 1)e ∈ W (Ki1+k) by (b̈), we have q′′i1+k = j0 − (k + 1)e.
Note that we have also proved mi1+k = k, for m ≤ k ≤ m′ + 1.
If i1 + m′ + 1 = b then we have finished the proof. Suppose i1 + m′ + 1 < b

and i1 +m′ = i2. As p′i2+1 − e 6∈ Ji2+1 implies p′i2+1 − e 6∈ Ji1+m′ , (g̈) for k = m′

implies p′i2+1 − je 6∈ Ji1+m′ , and thus p′i2+1 − je 6∈ Ji2+1, for 1 ≤ j ≤ m′. Let
x = p′i2+1 − (m′ + 1)e. Then x + e 6∈ Ji1+m′ and p′i1+m′ − e < x < p′i1+m′ . Thus,
if x ∈ Ji1+m′ then x ∈ W (Ji1+m′) and the minimality of q′i1+m′ is contradicted.
Therefore, p′i2+1 − je 6∈ Ji2+1, for 1 ≤ j ≤ m′ + 1 = mi2+1.

To complete the proof of Lemma 7.7, we consider the case i1 +m′ < i2. Write
x′k = q′i1+k, for 0 ≤ k ≤ m′. We have

r(p′i1 ) ≥ r(x′0) ≥ · · · ≥ r(x′m′ )

by (̈f) for k = m′ + 1. We show i 6∈ U and the claims (A) to (C) below, for
i1 +m′ + 1 ≤ i ≤ i2 + 1. They hold when i = i1 +m′ + 1. Suppose that the claims
hold for i such that i1 + m′ + 1 ≤ i ≤ i2. Thus i ≤ i2 ≤ b − 1, `(p′i) ≥ m′ + 1,
r(p′i) = r(p′i1 ), i 6∈ U and

(A) j0 − eZ≥0 ⊂ Ji and maxJi = j0.
(B) Ki = (Ji \ {j0, j0 − e, . . . , j0 − (m′ + 1)e}) t {x′0, . . . , x

′
m′}.

(C) If x ∈ Z is such that 0 ≤ r(x) ≤ r(p′i1 ) then x 6∈ U(Ji) and x 6∈ U(Ki)
unless x = p′i.

Note that (B) implies p′i ∈ U(Ki), and (A), (B), (C) imply U(Ji) = U(Ki) and
p′′i = p′i.

As i 6∈ U , we have p′i1 −(i+1)e < q′i < j0−(i+1)e and q′i < p′i implies q′i−e ∈ Ji

and q′i − e ∈ Ji+1. Thus, if i+ 1 ≤ i2 then q′i − e ∈ W (Ji+1) and it follows that

p′i+1 − e < q′i+1 ≤ j0 − (i+ 2)e.

Hence, i+ 1 6∈ U .
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(B) implies q′i ∈W (Ki). Thus q′′i ≤ q′i. Then,

p′i − e = p′′i − e < q′′i < j0 − (i+ 1)e

and (B) implies q′′i ∈ W (Ji), which proves q′′i = q′i. Therefore, (A), (B), (C) for
i+ 1 follow.

We have proved U(Ji) = U(Ki), p
′
i 6= x′k, for 0 ≤ k ≤ m′, and (a), (b), (c), (d),

(e), (f), for i1 + m′ + 1 ≤ i ≤ i2 + 1. Now, `(q′i) = `(p′i) + 1 ≥ m′ + 2 implies
that we do not touch the layer levels smaller than or equal to m′ + 1 on runners
r(p′i1) + 1, . . . , e − 1. Thus (g), for i1 +m′ + 1 ≤ i ≤ i2 + 1, follow. Similarly, we
do not touch the layer levels smaller than or equal to m′ on runners 1, . . . , r(p′i1 ).
Thus (h), for i1 +m′ + 1 ≤ i ≤ i2 + 1, follows.

If i2 + 1 = b then we have finished the proof. Suppose i2 + 1 < b. Then
i2 + 1 is a reset point and r(p′i1 ) < r(p′i2+1) < e. Thus, (g) for i = i2 implies
p′i2+1 − je 6∈ Ji2+1, for 1 ≤ j ≤ mi2+1, since `(q′i2) ≥ m′ + 2, mi2+1 = mi2 = m′ + 1
and p′i2+1 − e 6∈ Ji2+1.

Now, the induction on i works and we have proved the claims for 0 ≤ i ≤ b. �

By Lemma 7.7, there exists m ≥ 1 such that we may write

Kb = (Jb \ {j0 − ke | 0 ≤ k ≤ m}) ∪ {xk | 0 ≤ k ≤ m− 1},

where r(xk) ≤ r(p′b), for 0 ≤ k ≤ m − 1. Consider Kb ∪ {j0}. As j1 ∈ Kb

and j0 − j1 ≤ e, the partition associated with Kb ∪ {j0} is e-restricted. Note that
U(Jb) = ∅ and U(Kb) = ∅. Hence, U(Kb∪{j0}) = {j0} and explicit computation of

downk(Kb∪{j0}), for k ≥ 0, by using (a) to (h), shows that we obtain downk+1(Kb∪
{j0}) from downk(Kb ∪ {j0}) by moving xk to j0 − (k + 1)e, for 0 ≤ k ≤ m − 1.
Thus we end up with base(Kb ∪ {j0}) = Jb. Therefore,

base(base(K) ∪ {j0}) = base(Kb ∪ {j0}) = Jb = base(J).

We have now proved the following proposition.

Proposition 7.8. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of

charge m. Set K = J≤j0−1, where j0 = maxJ . Then, the partition associated with

base(K) ∪ {j0} is e-restricted and we have

base(J) = base(base(K) ∪ {j0}).

Let λ ∈ B(Λm) and J the corresponding set of beta numbers of charge m. We
delete the first row from λ and we denote the resulting partition by µ. Assume
that base(µ) is already computed. Then it is easy to compute base(λ) by using
the above proposition. It gives us an efficient inductive definition of base and it is

possible to generalize main results in section 8 to other types A
(2)
2n and D

(2)
n+1.

Corollary 7.9. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of

charge m. Let j0 > · · · > jr be the largest r+1 members of J . Define Jr+1 = J≤jr−1

and Jk = base(Jk+1)∪{jk}, for k = r, . . . , 0. Then the partition associated with Jk

is e-restricted and base(J) = base(J0).

Proof. We show by downward induction on k that max Jk = jk and base(J≤jk
) =

base(Jk). When k = r + 1 there is nothing to prove. Suppose that the equations
hold for k+ 1. Then, jk+1 ∈ base(Jk+1) and jk − jk+1 ≤ e imply that the partition
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associated with Jk is e-restricted. Now, by Proposition 7.8 and the induction
hypothesis,

base(J≤jk
) = base(J≤jk+1

∪ {jk}) = base(base(J≤jk+1
) ∪ {jk})

= base(base(Jk+1) ∪ {jk}) = base(Jk).

Thus, base(J) = base(J0) follows. �

8. Base Theorem

Let λ ∈ B(Λm) and J the set of beta numbers of charge m. Define

Mi(λ) = Mi(J) = max{x ∈ J | x+ eZ = i}.

Lemma 8.1. Let λ ∈ B(Λm).
(1) If Mi(λ) ≤ Mi+1(λ) then Mi(down(λ)) ≤ Mi+1(down(λ)). In particular, if

Mi(λ) ≤Mi+1(λ) then si base(λ) ≤ base(λ).
(2) If λ is an si-core and siλ ≥ λ then

(i) down(λ) and down(siλ) are si-cores,

(ii) down(siλ) = si down(λ).

(3) Suppose that λ is an si-core and siλ ≥ λ.

(a) If si base(λ) > base(λ) then base(siλ) = si base(λ) > base(λ).
(b) If si base(λ) ≤ base(λ) then base(siλ) = base(λ).

(4) Suppose that λ has an addable i-node on the first row, and that if we delete the

first row then the resulting partition, which we denote by µ, is an e-core.

(a) Suppose that siµ ≥ µ. Then base(f̃
ϕi(λ)−1
i λ) = base(λ) < si base(λ).

(b) Suppose that siµ ≤ µ. Then ϕi(λ) = 1 and

base(f̃
ϕi(λ)
i λ) = si base(λ) > base(λ).

Proof. (1) Let J be the corresponding set of beta numbers of charge m, and define
p′ and q′ as in the definition of down(J). Note that adding the bead p′ − e does
not affect Mi(λ) or Mi+1(λ) because if q′ < p′ then there exists a larger element p′

in J . Thus it suffices to study the effect of moving q′.
First suppose that q′ 6= Mi+1(λ). Then

Mi+1(down(λ)) = Mi+1(λ) ≥Mi(λ) ≥Mi(down(λ)).

The last inequality is an equality when q′ 6= Mi(λ). Mi(down(λ)) ≤Mi+1(down(λ))
holds.

Second suppose that q′ = Mi+1(λ). In particular, q′ is on the (i + 1)th runner.
Note that p′ cannot be on the ith runner: if so then p′ ≥ q′ would imply p′ ≥ q′+e−1
and

Mi(λ) ≥ p′ ≥ q′ + e− 1 > q′ = Mi+1(λ),

which contradicts our assumption.
We shall show q′ − 1 6∈ J . Suppose on the contrary that q′ − 1 ∈ J . If q′ = p′

then q′ − 1 > p′ − e and q′ − 1 + e 6∈ J by Mi(λ) ≤ Mi+1(λ) = q′. This implies
that q′ − 1 ∈ W (J), which contradicts q′ = minW (J). If q′ < p′ then we also have
q′ − 1 > p′ − e and q′ − 1 + e 6∈ J , since p′ − e = q′ − 1 would imply that p′ is on
the ith runner. Hence we reach the contradiction q′ − 1 ∈ W (J) again. We have
proved that q′ − 1 6∈ J .

Now we are ready to prove that Mi(down(λ)) ≤Mi+1(down(λ)). Since q′−1 6∈ J
and Mi(λ) ≤ q′, we have Mi(down(λ)) ≤ q′ − 1 − e.
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Suppose that q′ < p′. Since p′ = minU(J), we have q′ − e ∈ J and

Mi+1(down(λ)) = q′ − e > Mi(down(λ))

follows. If q′ = p′ then we have Mi+1(down(λ)) = q′ − e by definition, and the
result again follows. We have proved the first half of the claim.

Now, define a decreasing sequence of partitions

λ = λ(0) > · · · > λ(k) > · · · > λ(s) = base(λ)

by down(λ(k)) = λ(k+1), for 0 ≤ k < s. Then, by repeated use of the first half
of the claim, we have Mi(base(λ)) ≤ Mi+1(base(λ)). This implies that the e-core
base(λ) does not have an addable i-node. Thus si base(λ) ≤ base(λ).

(2) Note that siλ is an si-core by Lemma 3.4(3). Let J be the set of beta
numbers of charge m associated with λ. As λ is an si-core, p′ = minU(J) cannot
be on the ith or the (i + 1)th runners. Since siλ is obtained from λ by the rule
given in Lemma 3.4, both contain p′, that is, p′ = minU(J) = minU(siJ). Let
q′ = minW (J). Then q′ for siλ is given by

minW (siJ) =











q′ + 1 = Mi(λ) + 1 = Mi+1(siλ) if q′ + eZ = i.

q′ − 1 = Mi+1(λ) − 1 = Mi(siλ) if q′ + eZ = i+ 1.

q′ otherwise.

To see this, note that if x < q′ is located on a runner different from the ith and the
(i+ 1)th runners and if x satisfies x ∈ J , p′ − e < x and x+ e 6∈ J , then x 6∈ W (J),
which implies x 6∈ W (siJ).

Suppose that q′ + eZ = i. Then q′ < p′ and q′ = Mi(λ) ≥Mi+1(λ) implies that

Mi+1(λ) − 1 ≤ q′ − e ≤ p′ − e.

Thus Mi+1(λ) − 1 6∈ W (siJ) and there is no element of W (siJ) on the ith runner.
On the other hand, we have q′ + 1 ∈W (siJ) and minW (siJ) = q′ + 1 follows.

If q′ + eZ = i+ 1 then q′ < p′, q′ = Mi+1(λ) and minW (siJ) = q′ − 1 is easy to
see. Similarly, we have minW (siJ) = q′ otherwise. Now it is clear that

(i) down(λ) and down(siλ) are si-cores, (ii) down(siλ) = si down(λ).

(3) To prove (a) and (b), we consider two decreasing sequences

λ = λ(0) > · · · > λ(k) > · · · > λ(s) = base(λ)

siλ = µ(0) > · · · > µ(k) > · · · > µ(t) = base(siλ)

where down(λ(k)) = λ(k+1), for 0 ≤ k < s, and down(µ(k)) = µ(k+1), for 0 ≤ k < t.
(a) We prove by induction on k that

(i) λ(k) and µ(k) are si-cores, (ii) µ(k) = siλ
(k), (iii) siλ

(k) ≥ λ(k),

for 0 ≤ k ≤ min(s, t). This implies the desired result. In fact, as λ(k) is an e-core if
and only if µ(k) = siλ

(k) is an e-core by Lemma 3.4(3), we must have s = t. Thus
base(siλ) = si base(λ) follows.

If k = 0 then the claim holds by the hypothesis. Suppose that the claim holds
for k. Then (2) implies

(i) λ(k+1) = down(λ(k)) and µ(k+1) = down(µ(k)) = down(siλ
(k)) are si-cores,

(ii) µ(k+1) = down(µ(k)) = down(siλ
(k)) = si down(λ(k)) = siλ

(k+1).
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IfMi(down(λ(k))) < Mi+1(down(λ(k))) then (1) implies that si base(λ) ≤ base(λ),
contradicting the hypothesis. Thus, Mi(down(λ(k))) ≥ Mi+1(down(λ(k))) and this
and (i) imply

(iii) siλ
(k+1) ≥ λ(k+1).

(b) If siλ
(0) = λ(0) then the result is obvious. Suppose that siλ

(0) > λ(0). As
siλ

(t) ≤ λ(t), the same induction argument as in (a) proves that there exists the
maximal 1 ≤ k0 ≤ t such that

(i) λ(k) and µ(k) are si-cores, (ii) µ(k) = siλ
(k), (iii) siλ

(k) > λ(k),

for 0 ≤ k ≤ k0 − 1. Then (i) for k = k0 − 1 and siλ
(k0−1) > λ(k0−1) imply

Mi(λ
(k0−1)) > Mi+1(λ

(k0−1)).

Applying (2) once more, we also have

(i) λ(k0) is an si-core, (ii) µ(k0) = siλ
(k0).

Let J be the set of beta numbers of charge m associated with λ(k0−1). Then,
λ(k0−1) and µ(k0−1) both have p′ = minU(J) = minU(siJ). Consider q′ =
minW (J). Assume that q′ + eZ 6= i. Then

Mi+1(λ
(k0−1)) < Mi(λ

(k0−1)) = Mi(λ
(k0)) ≤Mi+1(λ

(k0))

and Mi+1(λ
(k0)) is either Mi+1(λ

(k0−1)) − e or Mi+1(λ
(k0−1)). In either case, we

have a contradiction, and we conclude that q′ + eZ = i. Then

Mi+1(λ
(k0−1)) < Mi(λ

(k0−1)) = Mi(λ
(k0)) + e ≤Mi+1(λ

(k0)) + e

and Mi+1(λ
(k0)) + e = Mi+1(λ

(k0−1)) + e.
As Mi+1(λ

(k0−1)) < Mi(λ
(k0−1)) implies Mi+1(λ

(k0−1)) + e − 1 ≤ Mi(λ
(k0−1))

and Mi(λ
(k0)) 6= Mi+1(λ

(k0)), we have Mi(λ
(k0)) + 1 = Mi+1(λ

(k0)). Since λ(k0) is
also an si-core, this implies siλ

(k0) = λ(k0). Hence, we have µ(k0) = λ(k0), which
implies base(siλ) = base(λ).

(4) (a) Since siµ ≥ µ, λ does not have a removable i-node. Let J be the set

of beta numbers associated with f̃
ϕi(λ)−1
i λ, and let K be the set of beta numbers

associated with λ. We have maxJ = j0 = maxK. Then

(i) By deleting the first row from f̃
ϕi(λ)−1
i λ, we obtain f̃max

i µ = siµ.

(ii) The set of beta numbers associated with f̃
ϕi(λ)−1
i λ is si(J \ {j0}) ∪ {j0}.

If ϕi(λ) = 1 then the claim base(f̃
ϕi(λ)−1
i λ) = base(λ) is obvious. Assume that

ϕi(λ) > 1. Then f̃
ϕi(λ)−1
i λ has both an addable i-node and a removable i-node,

thus it cannot be an e-core. This implies U(J) 6= ∅ and we have U(J) = {j0},
p′ = minU(J) = j0.

Note that the abacus displays of J and K have the following form by (i) and (ii)
above.
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J :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · · · ·

· · · j0 · · ·

K :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · · · ·

· · · j0 · · ·

Thus, there exists k0 such that, for 0 ≤ k ≤ k0, downk+1(f̃
ϕi(λ)−1
i λ) and

downk+1(λ) are obtained from downk(f̃
ϕi(λ)−1
i λ) and downk(λ) by moving the

maximal element of the jth runner, for some j 6= i, i + 1, to the ith runner, re-

spectively. Note that j is the same for f̃
ϕi(λ)−1
i λ and λ in each step k. At k = k0,

we reach the following form.

downk0(J) :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · j0 · · ·

downk0(K) :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · j0 · · ·

Note that downk0(K) = base(λ). In particular, we have si base(λ) > base(λ).

By computing downk(J), for k > k0, we conclude that base(f̃
ϕi(λ)−1
i λ) = base(λ).

(b) Since siµ ≤ µ, λ has the unique addable i-node, which is the addable i-node

on the first row. Thus, ϕi(λ) = 1 and we compare base(f̃iλ) and base(λ). Let J
and K be the corresponding sets of beta numbers, respectively. Then the abacus
displays of J and K have the following form, where j ′0 = j0 − 1.

J :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · · · ·

· · · j0 · · ·

K :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · · · ·

· · · j′0 · · ·

By a similar argument as above, there exists k0 such that downk0(J) and downk0(K)
have the following form.
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downk0(J) :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · j0 · · ·

downk0(K) :

· · · × × · · ·

· · · × × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · × · · ·

· · · j′0 · · ·

Thus, base(J) = downk0(J), and by computing downk(K), for k > k0, we have
base(J) = si base(K) > base(K). �

Lemma 8.2. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of charge

m. Suppose that f̃iλ 6= 0 and that f̃iJ is obtained from J by moving x to x+ 1.

(1) si base(J≤x−1) ≤ base(J≤x−1).

(2) base((f̃iJ)≤x+1) = si base(J≤x+1) > base(J≤x+1).
(3) Suppose that {z ∈ J≥x+1 | z + eZ = i} 6= ∅. We denote

y = min{z ∈ J≥x+1 | z + eZ = i}.

Then we have either

(i) base((f̃iJ)≤y−1) = si base(J≤y−1) > base(J≤y−1), or

(ii) base((f̃iJ)≤y−1) = base(J≤y−1).

Proof. (1) Since f̃iJ is obtained from J by moving x to x + 1, x is the smallest
addable i-integer which corresponds to a normal i-node. Note that all the elements
in

{x− ke ∈ J | k ∈ Z≥1, x− ke+ 1 6∈ J, x− ke > Mi+1(J≤x−1)}

correspond to addable normal i-nodes. Thus, it must be empty and we have

Mi(J≤x−1) ≤Mi+1(J≤x−1).

Now Lemma 8.1(1) implies the result.

(2) Note that J≤x−1 = (f̃iJ)≤x−1 and

J≤x+1 = J≤x−1 ∪ {x}, (f̃iJ)≤x+1 = (f̃iJ)≤x−1 ∪ {x+ 1}.

Thus Proposition 7.8 implies
{

base(J≤x+1) = base(base(J≤x−1) ∪ {x}),

base((f̃iJ)≤x+1) = base(base(J≤x−1) ∪ {x+ 1}).

As base(J≤x−1) is the set of beta numbers of an e-core, say µ, and siµ ≤ µ by (1),
and the partition associated with J≤x+1 has an addable i-node on the first row, we
are in the situation of Lemma 8.1(4)(b). Note that the addable i-node on the first

row is the lowest addable normal i-node. Thus, (f̃iJ)≤x+1 = f̃i J≤x+1 and

base((f̃iJ)≤x+1) = si base(J≤x+1) > base(J≤x+1).

(3) Denote (f̃iJ)≤y−1 ∩Z≥x+2 = J≤y−1∩Z≥x+2 by L. L does not contain beads
on the ith and the (i + 1)th runners. The former follows from the definition of y.
To see the latter, observe that there is no bead between x and y on the ith runner.
Thus, if there was a bead between x + 1 and y − e + 1 on the (i + 1)th runner,
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then RA-deletion would occur between x and the bead, contradicting the fact that
x corresponds to a normal i-node. Hence the claim follows.

Write L = {js, . . . , js+r} and set J ′
s+r+1 = J≤x+1, J

′′
s+r+1 = (f̃iJ)≤x+1. Define

J ′
k and J ′′

k , for k = s+ r, . . . , s, by

J ′
k = base(J ′

k+1) ∪ {jk} and J ′′
k = base(J ′′

k+1) ∪ {jk}.

We have

(]) base(J ′′
s+r+1) = si base(J ′

s+r+1) > base(J ′
s+r+1) by (2).

(]) base(J≤y−1) = base(J ′
s) and base((f̃iJ)≤y−1) = base(J ′′

s ) by Corollary 7.9.

Suppose that base(J ′
k) = base(J ′′

k ), for some k. Then we have

base((f̃iJ)≤y−1) = base(J ′′
s ) = base(J ′

s) = base(J≤y−1).

Next suppose that base(J ′
k) 6= base(J ′′

k ), for all k. We prove by downward induction
on k that base(J ′′

k ) = si base(J ′
k) > base(J ′

k). If k = s+ r+ 1 then there is nothing
to prove. Suppose that the assertion holds for k + 1. Let

J ′
k+1,t = downt(base(J ′

k+1) ∪ {jk}) and J ′′
k+1,t = downt(base(J ′′

k+1) ∪ {jk}),

for t ≥ 0. We show that

(i) Mi(J
′
k+1,t) > Mi+1(J

′
k+1,t). (ii) siJ

′
k+1,t = J ′′

k+1,t.

When t = 0 (i) and (ii) follow from base(J ′′
k+1) = si base(J ′

k+1) > base(J ′
k+1).

Suppose (i) and (ii) for t and apply the down operation to J ′
k+1,t and J ′′

k+1,t.

Then, p′ is the same for both and it lies on the same runner as jk. Consider q′ for
J ′

k+1,t. Then we have one of the following.

(a) If q′ is not on the ith or the (i + 1)th runners, then J ′
k+1,t+1 and J ′′

k+1,t+1

are obtained by moving q′ to p′ − e respectively.
(b) If q′ is on the ith runner, then J ′

k+1,t+1 is obtained by moving q′ to p′ − e

and J ′′
k+1,t+1 is obtained by moving q′ + 1 to p′ − e.

(c) If q′ is on the (i + 1)th runner, then J ′
k+1,t+1 is obtained by moving q′ to

p′ − e and J ′′
k+1,t+1 is obtained by moving q′ − 1 to p′ − e.

In all the cases, we have (ii) for t+ 1. Now suppose that (i) breaks down at t+ 1.
Then we have

Mi(J
′
k+1,t) > Mi+1(J

′
k+1,t) and Mi(J

′
k+1,t+1) ≤Mi+1(J

′
k+1,t+1).

The equality does not hold in the latter, since they are on different runners. Thus,
we have Mi(J

′
k+1,t+1) = Mi(J

′
k+1,t) − e and Mi+1(J

′
k+1,t+1) = Mi+1(J

′
k+1,t), and

Mi(J
′
k+1,t) − e < Mi+1(J

′
k+1,t+1) ≤Mi(J

′
k+1,t) − e+ 1

implies thatMi+1(J
′
k+1,t+1) = Mi(J

′
k+1,t+1)+1. Hence we conclude that J ′′

k+1,t+1 =

siJ
′
k+1,t+1 = J ′

k+1,t+1. However, this implies base(J ′
k) = base(J ′′

k ), contradicting

our assumption. Hence, (i) holds for t+ 1.
Therefore, base(J ′′

k ) = si base(J ′
k) > base(J ′

k) holds. By setting k = s and using

base(J≤y−1) = base(J ′
s) and base((f̃iJ)≤y−1) = base(J ′′

s ), we have proved

base((f̃iJ)≤y−1) = si base(J≤y−1) > base(J≤y−1)

in this case. �

Lemma 8.3. Let λ ∈ B(Λm) and J the corresponding set of beta numbers of charge

m. Suppose that f̃iλ 6= 0 and f̃iJ is obtained from J by moving x ∈ J to x+1 ∈ f̃iJ .
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(1) Suppose that {z ∈ J≥x+1 | z + eZ = i} = ∅.

(a) If si base(λ) > base(λ) then base(f̃iλ) = si base(λ) > base(λ).

(b) If si base(λ) ≤ base(λ) then base(f̃iλ) = base(λ).

(2) If {z ∈ J≥x+1 | z + eZ = i} 6= ∅ then base(f̃iλ) = base(λ).

Proof. (1) Write J≥x+2 = {j0, . . . , jr}. Set J ′
r+1 = J≤x+1 and J ′′

r+1 = (f̃iJ)≤x+1.
Then define J ′

k and J ′′
k , for k = r, . . . , 0, by

J ′
k = base(J ′

k+1) ∪ {jk} and J ′′
k = base(J ′′

k+1) ∪ {jk}.

Then Corollary 7.9 implies

base(J) = base(J ′
0) and base(f̃iJ) = base(J ′′

0 ).

There is no element of J≥x+2 on the ith runner because Mi(J) = x. Suppose that
there is an element of J≥x+2 on the (i+ 1)th runner. We denote by y the minimal
such. Then J has the following layers.

· · · x · · ·

· · · · · ·

· · · y · · ·

This implies that RA-deletion occurs between x and y, which is a contradiction.
Thus, there is also no element of J≥x+2 on the (i+ 1)th runner.

By Lemma 8.2(2), we have

base(J ′′
r+1) = si base(J ′

r+1) > base(J ′
r+1).

Hence, J ′′
r = siJ

′
r are si-cores and Mi(J

′
r) > Mi+1(J

′
r).

We prove by downward induction on k that

(a) If si base(J ′
k) > base(J ′

k) then base(J ′′
k ) = si base(J ′

k) > base(J ′
k).

(b) If si base(J ′
k) ≤ base(J ′

k) then base(J ′′
k ) = base(J ′

k).

When k = r, (a) and (b) follow from Lemma 8.1(3). Suppose that (a) and (b) hold
for k + 1. Then we have either

(a’) J ′′
k = siJ

′
k are si-cores and Mi(J

′
k) > Mi+1(J

′
k), or

(b’) J ′′
k = J ′

k is an si-core and Mi(J
′
k) ≤Mi+1(J

′
k).

Suppose that si base(J ′
k) > base(J ′

k). Then (b’) does not occur by Lemma 8.1(1).
Thus (a’) must occur and Lemma 8.1(3) implies

base(J ′′
k ) = si base(J ′

k) > base(J ′
k).

Suppose that si base(J ′
k) ≤ base(J ′

k). If (b’) occurs then base(J ′′
k ) = base(J ′

k)
obviously holds, so we may assume that (a’) occurs. Then, Lemma 8.1(3) implies
base(J ′′

k ) = base(J ′
k) also. We have proved that (a) and (b) hold for k.

Setting k = 0 and using base(J) = base(J ′
0) and base(f̃iJ) = base(J ′′

0 ), we have
the desired result.

(2) Define y = min{z ∈ J≥x+1 | z+ eZ = i} as before. Then, by Proposition 7.8,
{

base(J≤y) = base(base(J≤y−1) ∪ {y}),

base((f̃iJ)≤y) = base(base((f̃iJ)≤y−1) ∪ {y}).

Let J ′ = base(J≤y−1)∪{y} and J ′′ = base((f̃iJ)≤y−1)∪{y}. By Lemma 8.2(3) we
have either

(i) base((f̃iJ)≤y−1) = si base(J≤y−1) > base(J≤y−1), or
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(ii) base((f̃iJ)≤y−1) = base(J≤y−1).

Let λ′ be the partition whose set of beta numbers of chargem is J ′. If (i) occurs then

J ′′ = f̃
ϕi(λ

′)−1
i J ′ and we are in the situation of Lemma 8.1(4)(a). Thus we have

base(J ′) = base(J ′′). If (ii) occurs then J ′ = J ′′ and we have base(J ′) = base(J ′′)

again. Thus, base((f̃iJ)≤y) = base(J≤y) in both cases. Now Corollary 7.9 implies

base(f̃iJ) = base(J). �

The next theorem is the counterpart to Theorem 6.3, the “roof lemma”of [KLMW1].

Theorem 8.4. Let λ ∈ B(Λm). Then

base(f̃max
i λ) =

{

si base(λ) (if base(λ) has an addable i-node)

base(λ) (otherwise)

and base(f̃ t
i λ) = base(λ), for 0 ≤ t < ϕi(λ).

Proof. The theorem is equivalent to the following two statements.

(a) If ϕi(λ) = 1 and si base(λ) > base(λ) then

base(f̃iλ) = si base(λ) > base(λ).

(b) Otherwise base(f̃iλ) = base(λ).

Suppose that the assumption in (a) holds. Then si base(λ) > base(λ) implies
Mi(λ) > Mi+1(λ) by Lemma 8.1. Thus Mi(λ) corresponds to an addable normal

i-node. As ϕi(λ) = 1, f̃iλ is obtained from λ by adding this node. We apply Lemma
8.3. Then x = Mi(λ) and (1)(a) applies. Hence the result follows.

Suppose that the assumption in (b) holds. Then we have si base(λ) ≤ base(λ)
or ϕi(λ) ≥ 2. In the former case, either (1)(b) or (2) of Lemma 8.3 applies. In

the latter case, Lemma 8.3(2) applies. Hence base(f̃iλ) = base(λ) follows in both
cases. �

Corollary 8.5. base(λ) = floor(λ).

Proof. Note that Lemma 5.15 implies that

floor(f̃max
i λ) =

{

si floor(λ) (if floor(λ) has an addable i-node)

floor(λ) (otherwise)

and floor(f̃ t
i λ) = floor(λ), for 0 ≤ t < ϕi(λ). Thus induction on the size of λ proves

the result. �

The next theorem follows from Theorem 6.23 and Corollary 8.5.

Theorem 8.6. In the partition realization of B(Λm), we have

Bw(Λm) = {λ ∈ B(Λm) | base(λ) ⊃ w∅m}.

Recall that wm is the longest element of Wm.

Corollary 8.7. Write base(λ) = wλ∅m, for a unique wλ ∈ W/Wm. Then

wλwm = max {w ∈W | λ ∈ Bw(Λm)}

with respect to the Bruhat-Chevalley order.
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9. Kleshchev multipartitions

Recall that Mi(λ) = max{x ∈ J | x+ eZ = i}.

Definition 9.1. Let λ ∈ B(Λ0) be an e-core, J the corresponding set of beta

numbers of charge 0. Write {Mi(λ)}i∈Z/eZ in descending order

Mi1(λ) > Mi2(λ) > · · · > Mie
(λ).

Then define τm(J) = J ∪ {Mik
(λ) + e}1≤k≤m, and denote the corresponding e-

restricted partition by τm(λ) ∈ B(Λm). If m = 0 then τm(λ) = λ.

Recall from the definition of W̊ in [Kc, p.74] and [Kc, Proposition 6.5] that W
is the semidirect product of W0 and T , where T = {tα | α ∈ ⊕e−1

i=1 Zαi}, and T acts
on weights by

tαΛ = Λ + Λ(c)α− ((Λ, α) +
1

2
|α|2Λ(c))δ.

See [Kc, (6.5.2)]. Thus, any weight in the W -orbit WΛ0 is of the form tαΛ0, for
some tα ∈ T . Note that tα is not necessarily a distinguished coset representative.

Lemma 9.2. Suppose that λ ∈ B(Λ0) is an e-core, and write λ = tα∅0, for α =
∑e−1

i=1 miαi. Then mi = N0(λ) −Ni(λ), for 1 ≤ i ≤ e− 1.

Proof. As wt(λ) = tαΛ0 = Λ0 + α− 1
2 |α|

2δ,

e−1
∑

i=0

Ni(λ)αi = Λ0 − tαΛ0 =
1

2
|α|2δ − α.

Thus N0(λ) = 1
2 |α|

2 and Ni(λ) = 1
2 |α|

2 − mi, for 1 ≤ i ≤ e − 1. The result
follows. �

Proposition 9.3. Let λ = w∅0 ∈ B(Λ0) and let µ = w′∅m ∈ B(Λm), where

w ∈ W/W0 and w′ ∈W/Wm. Then ww0 ≥ w′ if and only if τm(λ) ⊃ µ.

Proof. We use Proposition 4.4 throughout freely, without comment.

We may write λ = tα∅0, for α =
∑e−1

i=1 miαi, and tα = wv, for v ∈ W0. Then
ww0∅m = tαu∅m for u = v−1w0 ∈ W0. If u ∈ W0 then tαu ≤ ww0, which implies
tαu∅m ⊂ ww0∅m. Thus

ww0∅m = max{tαu∅m | u ∈W0}.

If ww0 ≥ w′ then ww0∅m ⊃ w′∅m = µ, and conversely, if ww0∅m ⊃ µ then
ww0 ≥ w′. Thus we want to show ww0∅m = τm(λ).

Suppose that m = 0. Then ww0∅m = w∅m = λ and ww0∅m = τm(λ) is trivial.
Suppose that m 6= 0. Fix u ∈ W0 and write uΛm = Λm − β, for some β ∈

∑e−1
i=1 Z≥0αi. Then

{

tαΛm = Λm + α− ((Λm, α) + 1
2 |α|

2)δ,

tαβ = β − (β, α)δ.
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We also have tαΛ0 = Λ0 + α − 1
2 |α|

2δ, which implies
∑e−1

i=0 Ni(λ)αi = 1
2 |α|

2δ − α
as before. Therefore,

e−1
∑

i=0

Ni(tαu∅m)αi = Λm − tαuΛm = Λm − tα(Λm − β)

=
(

(Λm, α) +
1

2
|α|2 − (β, α)

)

δ − α+ β

= (Λm − β, α)δ + β +
e−1
∑

i=0

Ni(λ)αi.

As tαu∅m ⊂ ww0∅m, for all u, the height of (Λm − β, α)δ + β must attain a
maximum value at ww0∅m.

As u ∈W0, we may compute uΛm by restricting the weights to g(Ae−1). Hence
we consider the restricted weights for the moment, and, by abuse of notation, we
use the same uΛm. Then, Λm may be considered as the weight ε1 + · · · + εm of
g(Ae−1) = sl(e,C), where the weight lattice of sl(e,C) is realized as ⊕e−1

i=1 Zεi with
∑e−1

i=1 εi = 0 as usual, and the simple roots are {αi = εi − εi+1}1≤i<e. Thus,

uΛm = Λm − β ∈ {εi1 + · · · + εim
| 1 ≤ i1 < · · · < im ≤ e}.

Write uΛm =
∑m

k=1 εik
. Note that (εi, εj) = δij and we may compute (Λm − β, α)

by using the restricted weights. Thus, by Lemma 9.2,

(Λm − β, α) =

m
∑

k=1

(εik
, α) =

m
∑

k=1

(mik
−mik−1) =

m
∑

k=1

(Nik−1(λ) −Nik
(λ)).

As β =
∑m

k=1(εk − εik
), the height of β is

∑m
k=1(ik − k). Therefore, the value to

be maximized is
m

∑

k=1

(Nik−1(λ) −Nik
(λ))e+ (ik − k).

Define Li = (Ni−1(λ) − Ni(λ))e + i, for 1 ≤ i ≤ e. Here, we understand that
Ne(λ) = N0(λ). It is important that the range for i is not 0 ≤ i ≤ e − 1 but
1 ≤ i ≤ e. Let J be the set of beta numbers of charge 0 associated with λ and
Mi(λ) = max{x ∈ J | x+ eZ = i} as before. Then,

e−1
∑

i=0

Ni(tαu∅m)αi =
(

m
∑

k=1

Lik
− ik
e

)

δ +

m
∑

k=1

(αk + · · · + αik−1) +

e−1
∑

i=0

Ni(λ)αi.

We claim that Li = Mi(λ) + e, for 1 ≤ i ≤ e. Recall how to read Ni(λ) from
the abacus. We explain this by an example. Let λ = (4, 2) and e = 6. Then the
corresponding J is displayed as follows.

−12 −11 −10 −9 −8 −7
−6 −5 −4 −3 −2

1 4

We read the numbers on the abacus from −∞ and with initial value 0, and
increment the value by 1 at each number which does not belong to J . Equivalently,
the value at x is |{y ≤ x | y 6∈ J}|. We obtain
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0 0 0 0 0 0
0 0 0 0 0 1
2 2 3 4 4 5
6 7 8 9 10 11

We consider the same for the empty partition. Then we have

0 0 0 0 0 0
0 0 0 0 0 0
0 1 2 3 4 5
6 7 8 9 10 11

We compute the difference and obtain:

0 0 0 0 0 0
0 0 0 0 0 1
2 1 1 1 0 0
0 0 0 0 0 0

Then Ni(λ) is the summation of the entries on the ith runner.

N0(λ) = 2, N1(λ) = 1, N2(λ) = 1, N3(λ) = 1, N4(λ) = 0, N5(λ) = 1.

In this example, we have

L1 = 7, L2 = 2, L3 = 3, L4 = 10, L5 = −1, L6 = 0.

The proof of this rule is by induction on the size of λ. If x ∈ J moves to x+1 when
adding a node, then, as is explained in Example 2.1, the box to be added has the
content x. Then observe that |{y ≤ x | y 6∈ J}| increases by 1 at x.

Let α and β = α+ 1 be two consecutive numbers such that α ∈ i− 1 + eZ and
β ∈ i+ eZ.

Suppose that α ≥ 0. Then, by the above rule for computing Ni(λ), we have

(a) If β ∈ J then the values at α and β are the same. Thus, they contribute 1
to Ni−1(λ) −Ni(λ).

(b) If β 6∈ J then the value at β is greater than the value at α by 1. Thus, they
do not contribute to Ni−1(λ) −Ni(λ).

Similarly, if α < 0, then we have.

(a) If β 6∈ J then they contribute −1 to Ni−1(λ) −Ni(λ).
(b) If β ∈ J then they do not contribute to Ni−1(λ) −Ni(λ).

Suppose that Mi(λ) ≥ 1. We have, for example,

· × ×

· ×

0 ×

· ×

· ×

Then only those β ∈ J with α ≥ 0 contribute and the number of such is Mi(λ)+e−i
e .

Hence Li = Mi(λ)+e−i
e e+ i = Mi(λ) + e. Next suppose that Mi(λ) ≤ 0.
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· × ×

· ×

0 ×

· ×

· ×

Then only those β 6∈ J with α < 0 contribute and the number of such is i−e−Mi(λ)
e .

Hence Li = − i−e−Mi(λ)
e e+ i = Mi(λ) + e. We have proved Li = Mi(λ) + e.

Recall that we want to maximize
∑m

k=1 Lik
. This is achieved precisely when

{Lik
− e | 1 ≤ k ≤ m} consists of the largest m numbers of {Mi(λ) | 1 ≤ i ≤ e}.

¿From now on, we suppose that

{Mi1(λ),Mi2(λ), . . . ,Mim
(λ) | 1 ≤ i1 < · · · < im ≤ e}

are the largest m numbers of {Mi(λ) | 1 ≤ i ≤ e}. We write Mik
for Mik

(λ). Then

e−1
∑

i=0

Ni(ww0∅m)αi =
(

m
∑

k=1

Mik
+ e− ik
e

)

δ +

m
∑

k=1

(αk + · · · + αik−1) +

e−1
∑

i=0

Ni(λ)αi.

We compute Λ0 −wt(λ) and Λm −wt(τm(λ)). For the computation, it is helpful to
view a partition as a difference of two diagrams both of which extend infinitely to
the left. Let µ ∈ B(Λm) and define two subsets of Z2 by

A = {(i, j) | i ≥ −m, j < µi+m} and B = {(i, j) | i ≥ −m, j < 0},

where the i-coordiate increases downward as in English convention. We also define
the residue of x = (i, j) ∈ Z2 by res(x) = −i+ j + eZ ∈ Z/eZ. Then

Λm − wt(µ) =
∑

x∈A\B

αres(x) =
∑

x∈A

αres(x) −
∑

x∈B

αres(x).

We can justify the rightmost by considering the region D = {(i, j) | i ≤ N, j ≥ N ′},
for sufficiently large N and −N ′, and understand it as

∑

x∈A∩D

αres(x) −
∑

x∈B∩D

αres(x).

Let k0 > k1 > · · · be the beta numbers of µ. Thus, kj = µj +m− j. We may read
them from µ as Example 2.1. Then we may write

∑

x∈A

αres(x) =
∑

j≥0

∑

s<kj

αs, and
∑

x∈B

αres(x) =
∑

j≥0

∑

s<m−j

αs.

They do not make sense, but their difference does. Note that we can rearrange the
order of a finite number of rows of A or B to compute Λm − wt(µ).

Now we compare Λ0−wt(λ) and Λm−wt(τm(λ)). Let A = {(i, j) | i ≥ 0, j < λi}
and B = {(i, j) | i ≥ 0, j < 0}. Then

Λ0 − wt(λ) =
∑

x∈A

αres(x) −
∑

x∈B

αres(x).

Define A′, B′ ⊂ Z2 by

A′ = {(−k, j) | 1 ≤ k ≤ m, j < Mik
+ e− k}, B′ = {(−k, j) | 1 ≤ k ≤ m, j < 0}.
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Then

Λm − wt(τm(λ)) =
∑

x∈A∪A′

αres(x) −
∑

x∈B∪B′

αres(x).

Thus (Λm − wt(τm(λ))) − (Λ0 − wt(λ)) is given by
∑

x∈A′

αres(x) −
∑

x∈B′

αres(x).

Observe that the first term is given by
∑m

k=1

∑

j<Mik
+e αj and the second term is

given by
∑m

k=1

∑

j<k αj . Thus, for a sufficiently large N , we have

Λm − wt(τm(λ)) =
m

∑

k=1

(

Mik
+e−1

∑

j=−N

αj −
k−1
∑

j=−N

αj

)

+ Λ0 − wt(λ),

and each term in the sum is equal to

Mik
+ e− ik
e

δ + (αk + · · · + αik−1).

Hence Λm − wt(τm(λ)) = Λm − wt(ww0∅m), which implies ww0∅m = τm(λ). �

We may describe τm(λ), for 1 ≤ m < e, by Young diagrammatic terms. To see
this, let ` = `(λ) be the length of λ = (λ0, λ1, . . . ) and define

νi =

{

λi + e−m (0 ≤ i < m)

min{λi + e−m,λi−m} (m ≤ i)

We have νi = 0 if and only if i ≥ ` + m. It is clear that ν0 ≥ · · · ≥ νm−1 and
νm ≥ νm+1 ≥ · · · . As νm−1 < νm would imply λm−1 + e −m < λm + e −m, we
have νm−1 ≥ νm. Hence, ν is a partition.

Let shiftm(λ) = (0m, λ0, . . . , λ`−1, 0, . . . ). We denote by ab the partition (ab, 0, . . . ).
The sum of partitions is defined by λ+ µ = (λ0 + µ0, λ1 + µ1, . . . ). The following
proposition shows that

τm(λ) = (λ+ (e−m)`+m) ∩ ((λ1 + e−m)m + shiftm(λ)).

In particular, we have

a(τm(λ)) = a(λ) + e−m and `(τm(λ)) = `(λ) +m.

Proposition 9.4. Let λ be an e-core, and define ν as above. Then

ν = (ν0, . . . , ν`+m−1, 0, . . . ) = τm(λ).

Proof. Let J be the set of beta numbers of charge 0 associated with λ, and let K
be the set of beta numbers of charge m associated with ν. Then

ki+m = min{λi+m + e−m− i, λi − i} = min{ji+m + e, ji},

for i ≥ 0. We also have ki = ji + e, for 0 ≤ i < m. Hence, to obtain K from
J , we start with J + e, namely we slide down all the beads by one on the abacus,
and move ji+m + e to ji when ji+m + e > ji, for i ≥ 0. Since ν is a partition,
ji = ji′+m + e > ji′ , for some i′, when it occurs.

Our aim is to prove that K = J ∪ {Mik
(λ) + e}1≤k≤m. First we show that

x ∈ J implies x ∈ K. Suppose that x = ji and x 6∈ K. Since x must move,
ji = ji′+m + e > ji′ , for some i′ ≥ 0. Thus i < i′ and ji+m + e > ji′+m + e = ji.
Hence ji+m + e moves to x, which contradicts the assumption x 6∈ K.
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Next consider x ∈ {Mi(λ) + e}i∈Z/eZ. As x 6∈ J , no ji′+m + e ∈ J + e moves to
x. Hence x 6∈ K if and only if x = ji+m + e > ji, for some i. Let x = ji+m + e.
We have to show that ji+m + e > ji if and only if x 6∈ {Mik

(λ) + e}1≤k≤m. If
ji+m + e > ji then ji > ji+1 > · · · > ji+m−1 ≥ ji+m + 1 implies

{ji+m−1, ji+m−2, . . . , ji} ⊂ {ji+m + 1, ji+m + 2, . . . , ji+m + e− 1} ∩ J.

Hence ji+m−1 + e, . . . , ji + e are in pairwise distinct runners and all of them are
greater than x. We have proved x 6∈ {Mik

(λ) + e}1≤k≤m. If ji+m + e ≤ ji then
there exists i+m− 1 ≥ i′ > i such that

{ji+m−1, ji+m−2, . . . , ji′} = {ji+m + 1, ji+m + 2, . . . , ji+m + e− 1} ∩ J.

In fact, it is clear that ji+m−1 is the minimal element of the right hand side. Denote
the maximal element by ji′ . Then ji′ < ji+m + e ≤ ji implies i′ > i.

These beads are in pairwise distinct runners. Each of the i+m−i′(< m) runners
has a bead which is greater than x, but the remaining runners do not have such a
bead. Hence x ∈ {Mik

(λ) + e}1≤k≤m. �

We are now prepared to prove the following.

Theorem 9.5. Let λ ⊗ µ ∈ B(Λ0) ⊗ B(Λm). Then λ ⊗ µ ∈ B(Λ0 + Λm) if and

only if

τm(base(λ)) ⊃ roof(µ).

Proof. Suppose that m = 0. By Corollary 6.4 and Corollary 8.5, base(λ) ⊃ roof(µ)
is equivalent to floor(λ) ⊃ ceil(µ). Write floor(λ) = w∅0 and base(µ) = w′∅0, for
w,w′ ∈ W/W0. Then floor(λ) ⊃ ceil(µ) is equivalent to w ≥ w′, which is further
equivalent to

f(λ) = wΛ0 ≥ w′Λ0 = i(µ).

Hence Corollary 5.8 for r = d = 2 implies the result.
Suppose that m 6= 0. Write base(λ) = w∅0 and roof(µ) = w′∅m, for w ∈ W/W0

and w′ ∈ W/Wm respectively. Then Corollary 5.8 for r = 2, d = 1 implies that
λ⊗ µ ∈ B(Λ0 + Λm) if and only if ww0 ≥ w′. This is equivalent to τm(base(λ)) ⊃
roof(µ) by Proposition 9.3. �

Let Hn be the cyclotomic Hecke algebra defined by (T0 + 1)d(T0 + qm)r−d = 0,
(Ti − q)(Ti + 1) = 0, for 1 ≤ i < n, and the type B braid relations. As was
mentioned in the introduction, a complete set of simple Hn-modules is given by

the set of nonzero D(λ(r) ,...,λ(1))’s, where D(λ(r) ,...,λ(1)) is obtained from the Specht

module S(λ(r) ,...,λ(1)) by factoring out the radical of the invariant symmetric bilinear

form defined on it. The complete set is naturally a g(A
(1)
e−1)-crystal B(Λ), where

Λ = dΛ0 + (r − d)Λm. See [AM] and [A2], or [A1]. Note that when r = 2 and Q =
−qm, we obtain the Hecke algebra Hn(Q, q) of type B as special cases. Theorem
9.5 combined with the results explained in the introduction gives the following.

Corollary 9.6. Let λ = λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λ0)
⊗d ⊗ B(Λm)⊗r−d. Then the

following are equivalent.

(i) D(λ(r) ,...,λ(1)) 6= 0.
(ii) λ ∈ B(dΛ0 + (r − d)Λm).
(iii) The following three conditions hold.

(a) base(λ(k)) ⊃ roof(λ(k+1)), for 1 ≤ k < d,
(b) τm(base(λ(d))) ⊃ roof(λ(d+1)),
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(c) base(λ(k)) ⊃ roof(λ(k+1)), for d < k < r.

Recall that a(λ) is the length of the first row, and `(λ) is the length of the first
column. For a multipartition λ = λ(1)⊗· · ·⊗λ(r), define ai(λ) = a(λ(i))−`(λ(i+1)).
Mathas proved the following result.

Proposition 9.7. Suppose that e = 2 and let

λ = λ(1) ⊗ · · · ⊗ λ(r) ∈ B(Λm1) ⊗ · · · ⊗B(Λmr
) = B(Λ0)

⊗d ⊗B(Λm)⊗r−d.

Then λ ∈ B(dΛ0 + (r − d)Λm) if and only if ai(λ) ≥ δmimi+1 − 1, for 1 ≤ i < r.

Observe that any 2-core λ is of the form (c, c − 1, . . . , 1) and a(λ) = `(λ) = c.
Using the closed formulas for ceil(λ) and floor(λ) for a partition λ which is given
in Proposition 5.22, we have

(i) If mi = mi+1 then floor(λ(i)) ⊃ ceil(λ(i+1)) is equivalent to

a(λ(i)) ≥ `(λ(i+1)).

(ii) If mi 6= mi+1 then τ1(floor(λ(i))) ⊃ ceil(λ(i+1)) is equivalent to

a(λ(i)) + 1 ≥ `(λ(i+1)).

Thus, Mathas’ result follows from our results.
Now consider e = 3. Recently, in the spirit similar to Mathas’ result in e = 2,

Fayers has obtained a necessary and sufficient condition for (λ, µ) to be a Kleshchev
bipartition [F]. According to him, the condition may be restated as follows.

Proposition 9.8. Suppose that e = 3 and let λ⊗ µ ∈ B(Λ0) ⊗B(Λm).

(i) If m = 0 then λ⊗ µ ∈ B(Λ0 + Λm) if and only if

a(λ) ≥ `(m(µ)) and a(m(λ)) ≥ `(µ).

(ii) If m = 1 then λ⊗ µ ∈ B(Λ0 + Λm) if and only if

a(λ) ≥ `(m(µ)) − 2 and a(m(λ)) ≥ `(µ) − 1.

(iii) If m = 2 then λ⊗ µ ∈ B(Λ0 + Λm) if and only if

a(λ) ≥ `(m(µ)) − 1 and a(m(λ)) ≥ `(µ) − 2.

Recall that `(roof(µ)) = `(µ) by Lemma 2.4(3), and a(base(λ)) = a(λ) by
Lemma 2.7(3). By Proposition 5.21, we have the following equalities.

(i) a(λ) = a(base(λ)) and `(m(µ)) = `(roof(m(µ))) = a(roof(µ)).
(ii) a(m(λ)) = a(base(m(λ))) = `(base(λ)) and `(µ) = `(roof(µ)).

Thus, his condition is precisely

a(τm(base(λ))) ≥ a(roof(µ)) and `(τm(base(λ))) ≥ `(roof(µ)).

Note that any 3-core λ is of the form (c, c−2, . . . , c−2r+2, d2, (d−1)2, . . . , 12),
where d = c − 2r or d = c − 2r + 1.7 In particular, λ is determined by a(λ) and
`(λ), because a(λ) = c and `(λ) = r + 2d = 2c− 3r or 2c− 3r + 2 imply

r = −
[`(λ) − 2a(λ)

3

]

, d =
[2`(λ) − a(λ)

3

]

.

Hence, the above condition is equivalent to τm(base(λ)) ⊃ roof(µ).

7The number of i such that λi = λi+1 + 2 is r in the former case, and r − 1 in the latter case.
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As a conclusion, we may deduce Proposition 9.8 from our results, and conversely,
we may restate our results Theorem 9.5 and Corollary 9.6 in e = 3 by using his
more explicit numerical conditions, which we do not mention here.
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