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Abstract. The set of T -invariant curves in a Schubert variety through a T -fixed
point is relatively easy to characterize in terms of its weights, but the tangent space
is more difficult. We prove that the weights of the tangent space are contained in
the rational cone generated by the weights of the T -invariant curves. In simply
laced types, this remains true if “rational” is replaced by “integral”. We also obtain
conditions under which every weight of the tangent space is the weight of a T -invariant
curve, as well as a smoothness criterion. The results rely on equivariant K-theory,
as well as the study of different notions of decomposability of roots.
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1. Introduction

Let G be a semisimple algebraic group over an algebraically closed field of charac-

teristic zero. Let B ⊃ T be a Borel subgroup and maximal torus of G, respectively,

and let P be a parabolic subroup containing B. Let X be a Schubert variety in the

generalized flag variety G/P , by which we mean the closure of an orbit of the Borel

subgroup B− opposite to B, and let x be a T -fixed point of X. In this paper we study

two spaces: the tangent space to X at x, denoted TxX, and the span of tangent lines

to T -invariant curves through x, denoted TExX. These spaces are multiplicity-free

representations of T , and so are characterized by their sets of weights, which we denote

by Φtan and Φcur respectively.

In [LS84], Lakshmibai and Seshadri obtained a formula for Φtan in type A and gave

criteria based on this formula for X to be smooth at x. Lakshmibai then gave detailed

formulas for Φtan in all classical types [Lak95], [Lak00a], and [Lak00b]. Polo gave a

representation-theoretic description of Φtan in [Pol94]. See also [BL00, Chapter 5].

In [Car94], Carrell and Peterson gave a formula for Φcur and discovered a test for

determining whether X is rationally smooth at x.

The Carrell-Peterson formula for Φcur has certain advantages: it holds in all types,

is type-independent and relatively simple, and has clear connections to combinatorics.

The purpose of this paper is to study the relationship between Φtan and Φcur, with an

eye toward replacing Φtan by the computationally simpler Φcur in certain applications.

It is known that Φcur ⊆ Φtan, with equality in type A. Our main result is the following:

Theorem 1.1. Φtan ⊆ ConeA Φcur.

In this theorem and throughout this section A = Q; in simply laced types all results

hold for A = Z as well. By ConeA Φcur, we mean the set of all nonnegative A-linear

combinations of elements of Φcur. An alternative proof of this result for A = Q,

suggested by the referee (who attributed it to “folklore”), is given in Remark 9.5.

For several special cases, Theorem 1.1 is known. These are discussed in the paragraph

following Theorem 1.2. For the remaining cases, however, Theorem 1.1 is new, even in

classical types (besides type A). Indeed, Lakshmibai’s formulas for the tangent spaces

are very complicated, and it is not obvious how to use them to deduce Theorem 1.1.

Theorem 1.1 is equivalent to the assertion that Φtan and Φcur generate the same

cone C over A. This in turn is equivalent to the assertion that Φtan and Φcur have the

same A-indecomposable elements, where an element of a set is A-indecomposable if it

cannot be written as a positive A-linear combination of other elements of the set. In

the case A = Q, such indecomposable elements correspond to the edges of C. More

precisely, each indecomposable element lies on one edge, and each edge contains one

indecomposable element.
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Under certain conditions, Theorem 1.1 can be strengthened. The T -fixed point x

can be represented by a Weyl group element, which, by abuse of notation, we denote

by x as well.

Theorem 1.2. Suppose that G is simply laced and that (i) G/P is cominuscule; or

(ii) x is a cominuscule Weyl group element in the sense of Peterson; or (iii) G is of

type D and x is fully commutative. Then Φtan = Φcur.

For minuscule G/P , the conclusion of Theorem 1.2 follows from [Pol94, Corollary

4.3] (attributed there to [LS84]). Note that the list of minuscule and cominuscule G/P

differ only in types Bn and Cn (see [BL00, 2.11.15, 9.0.14]). By [Car97, Corollary 2],

the conclusion of the theorem also holds in type Cn when x = w0.

Part (iii) of Theorem 1.2 is a generalization in type D of (ii), since cominuscule

Weyl group elements are fully commutative, but Stembridge (see [Ste01]) provides an

example in type D of a fully commutative element which is not cominuscule. See

Remark 7.5 below.

As an application of Theorem 1.2, a smoothness criterion can be deduced. The

Schubert variety X is defined by a Weyl group element w such that w ≤ x in the

Bruhat-Chevalley order. Thus, any reduced expression s for x contains a reduced

subexpression for w.

Theorem 1.3. Suppose that G is simply laced and any of the three conditions of

Theorem 1.2 are satisfied. Let s be any reduced decomposition for x. Then X is smooth

at x if and only if s contains a unique reduced subexpression for w.

It can be deduced from [GK15, Corollary 2.11] that this criterion for smoothness in

fact holds whenever G/P is cominuscule, even without the simply laced requirement.

Further discussion of the criterion appears in [GK24].

In [Car97], Carrell obtained results which are related to those of this paper. Let us

denote the linear span of the reduced tangent cone to X at x by TRxX. Then

TExX ⊆ TRxX ⊆ TxX. (1.1)

Clearly, in all cases discussed above for which Φtan = Φcur, the three spaces of (1.1)

are equal. The space TRxX, like TCxX and TxX, is a representation of T , and so is

characterized by its set of weights. In [Car97, Theorem 2], Carrell proved that this set

of weights is contained in the set of roots in the real convex hull of Φcur, with equality

in simply laced types.

In addition to the results by Lakshmibai-Seshadri and Carroll-Peterson discussed

above, a number of other papers have studied smoothness and rational smoothness of

Schubert varieties. These include Lakshmibai-Sandhya [LS90], Kumar [Kum96], Bil-

ley [Bil98], Lakshmibai-Littelmann-Magyar [LLM98], Brion [Bri99], Billey-Warrington
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[BW03], Boe-Graham [BG03], Carrell-Kuttler [CK03], Gaussent [Gau03], and Kassel-

Lascoux-Reutenauer [KLR03]. We refer the reader to [BL00, Chapters 6 and 8] for a

detailed discussion of this topic.

Another application of Theorem 1.1 appears in [GK24], which studies multiplicities

of singular points of Schubert varieties.

1.1. Outline of the proof of Theorem 1.1. This theorem builds on the work of

[GK22] connecting Demazure products with weights of tangent spaces. Here, that

connection appears as Theorem 1.4, which is proved using the methods of [GK22].

The theorem of Carrell and Peterson describing Φcur ([Car94]) also plays a key role.

The proof of Theorem 1.1 also requires a detailed study of decomposability of roots.

An important new ingredient is the notion of iso-decomposability, which, as shown by

Theorem 4.11, appears naturally in the study of inversion sets of Weyl group elements.

In order to prove Theorem 1.1, which concerns the Schubert variety X, we first prove

an analogous but stronger result for the Kazhdan-Lusztig variety Y ⊆ X with T -fixed

point x. The reason we work with Y rather than X is that the tangent space to Y at x

lives in an ambient space with weights I(x−1), the inversion set of x−1, and algebraic

properties related to I(x−1) are essential to our proof.

Fix a reduced expression s = (s1, . . . , sl) for x. It is known that the roots of I(x−1)

can be enumerated explicitly by the formula γi = s1 · · · si−1(αi), i = 1, . . . , l, where αi
is the simple root corresponding to si. Based on this same expression s, define xi and

zi to be the ordinary and Demazure products respectively of (s1, . . . , ŝi, . . . , sl) (see

Section 4.1 for the formal definition of zi). Denote the weights of the tangent space

to Y at x by ΦKL
tan, and the weights of the tangent lines to T -invariant curves of Y

through x by ΦKL
cur. It follows easily from a result of Carrell and Peterson ([Car94]) that

ConeA ΦKL
cur = ConeA{γi | xi ≥ w} (indeed, this result holds before taking cones). For

ΦKL
tan, we have the following result, which follows from the methods of [GK22].

Theorem 1.4. ΦKL
tan ⊆ ConeA{γi | zi ≥ w}.

See Proposition 9.1. The main result of [GK22] is that if γi is an integrally indecom-

posable element of I(x−1), then γi is in ΦKL
tan if and only if zi ≥ w. Theorem 1.4 is a

related result which applies to all elements of ΦKL
tan.

The following equality of cones, which appears in the body of the paper as Corollary

5.5, is our main technical result.

Theorem 1.5. ConeA{γi | zi ≥ w} = ConeA{γi | xi ≥ w}.

The proof of Theorem 1.5 is taken up in Sections 3 - 5. Before discussing this proof,

we point out that Theorems 1.4 and 1.5 together clearly imply ΦKL
tan ⊆ ConeA ΦKL

cur. This

statement is stronger than Theorem 1.1. Indeed, a neighborhood of x in X is isomorphic

to the product Y by the tangent space to the B-orbit at x, which is a representation
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of T . Denoting the weights of this representation by Φ′, we have Φtan = ΦKL
tan tΦ′ and

Φcur = ΦKL
cur t Φ′. Thus ΦKL

tan ⊆ ConeA ΦKL
cur implies Φtan ⊆ ConeA Φcur.

The proof of Theorem 1.5 entails establishing various relationships among cones,

indecomposability, 0-Hecke algebras, and Weyl groups. The inclusion ConeA{γi | xi ≥
w} ⊆ ConeA{γi | zi ≥ w} follows from the fact that xi ≤ zi for all i. In order to prove

the other inclusion, we introduce two types of indecomposable elements: increasing

A-indecomposable and iso-indecomposable. Their definitions are deferred to Section 2.

In Sections 3, 5, and 4 respectively, we prove:

(i) Every element of {γi | zi ≥ w} is a positive A-linear combination of increasing

A-indecomposable elements which lie in {γi | zi ≥ w} (Corollary 3.8).

(ii) Increasing A-indecomposable elements are iso-indecomposable (Proposition

5.3).

(iii) Iso-indecomposable elements γi satisfy zi = xi (Corollary 4.12).

Together these statements imply that every element of {γi | zi ≥ w} is a positive

A-linear combination of elements which lie in {γi | xi ≥ w}. Thus {γi | zi ≥ w} ⊆
ConeA{γi | xi ≥ w}, completing the proof of Theorem 1.5.

The proof of Theorem 1.1 does not rely on Sections 6 and 7. The main result of these

sections, Theorem 6.1, is that for inversion sets in classical and type G2 root systems,

the notions of rational indecomposability and iso-indecomposability are equivalent, and

in simply laced types are equivalent to integral indecomposability. This result, which

we view as of independent interest, has a number of consequences, and is used in the

proofs of Theorems 1.2 and 1.3.

1.2. Organization of the paper. In Section 2 we define various notions of decom-

position and indecomposability in root sets, where a root set is a generalization of the

set of positive roots of a root system. Sections 3 - 7 mainly address general root sets

and the root set I(x−1). The purpose of Sections 3, 4, and 5, as discussed above, is to

prove Theorem 1.5, the main technical result needed for the proof of Theorem 1.1. The

purpose of Sections 6 and 7 is to establish further properties of indecomposability in

I(x−1) needed in later sections to prove Theorems 1.2 and 1.3 respectively. Specifically,

in Section 6, we show that various types of indecomposability in I(x−1) are equivalent

in classical types and type G2; in Section 7, we examine conditions under which all

elements of a root set are indecomposable.

In Sections 8 - 10, we narrow our focus to the root sets Φcur,Φtan ⊆ I(x−1). In Section

8, we review known properties of these two roots sets together with some known facts

about Schubert varieties, Kazhdan-Lusztig varieties, and T -invariant curves. In Section

9, Theorem 1.1 is proved, and in Section 10, Theorems 1.2 and 1.3 are proved. Finally,

Section 11 contains examples: we apply Theorem 1.1 to study tangent spaces of singular

three-dimensional Schubert varieties, and verify Theorem 1.1 by direct calculation for

a family of examples in type Dn.
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1.3. Notation. We introduce some notation related to algebraic groups, which will

be used throughout the paper. Let G be a semisimple Lie group defined over an

algebraically closed field of characteristic 0, and let B ⊃ T denote a Borel subgroup

and maximal torus of G, respectively. If V is a representation of T , we write Φ(V ) for

the set of T -weights of V . If N is a unipotent subgroup of G normalized by T , then

as a T -space, N is isomorphic to its Lie algebra n, which is a representation of T . We

write Φ(N) for Φ(n), and refer to this set as the weights of N .

Let Φ be the set of roots of G relative to T . Let Φ+ and Φ− be the sets of positive and

negative roots, chosen so that root spaces corresponding to positive roots are contained

in Lie(B). Let B− be the opposite Borel subgroup to B.

Let W = NG(T )/T , the Weyl group of G. We will use the same letter to denote an

element of W and a lift of this element to G. We denote by sα the reflection in W

corresponding to α ∈ Φ. Let S′ be the set of simple reflections in W relative to B. The

length of w ∈W is denoted by `(w); the longest element in W is w0.

Let P be a parabolic subgroup containing B, and let P− be the opposite parabolic

subgroup to P . Let L = P ∩ P− be the Levi subgroup of P containing T , and let

WP = NL(T )/T , the Weyl group of L. Each coset uWP in W/WP contains a unique

representative of minimal length; denote the set of minimal length coset representatives

by WP ⊆W . When P = B, we have L = T , and WP = W .

The torus acts on the generalized flag variety G/P by left translation. The T -fixed

points are the cosets wP for w ∈WP . The Schubert varieties we consider are closures

of B−-orbits: Xw
0 is the Schubert cell B− · wP , and its closure is the Schubert variety

Xw. The closures of B-orbits will be referred to as opposite Schubert varieties; in

particular, X0
w = B ·wP denotes the opposite Schubert cell at wP , and Xw its closure.

The relation between the two types of Schubert varieties is that

w0Xw0w = Xw and w0Φ(Tw0xXw0w) = Φ(TxX
w). (1.2)

This relation can be used to translate results from one type of Schubert variety to the

other.

We have Xx ⊆ Xw if and only if x ≥ w in the Bruhat-Chevalley order (see [BL00,

Section 2.7]). In particular, Xe = G/P and Xw0 is the B−-fixed point. The T -fixed

points of Xw are the xP with x ≥ w in the Bruhat order.

Let U , U−, and U−P be the unipotent radicals of B, B−, and P− respectively. Define

U−(x) = xU−x−1 and U−P (x) = xU−P x
−1. The subgroups U , U−, U−P , U−(x), and

U−P (x) are unipotent. The weights of the first three of these under the T action are

denoted by Φ+, Φ−, and Φ−P respectively; the weights of the last two are then xΦ− and

xΦ−P respectively.
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2. Indecomposability in root sets: definitions and basic properties

As discussed briefly in Section 1, there is a connection between cones and inde-

composability. This connection is explored in Section 3. In this section we focus on

indecomposability. We introduce various types of indecomposability and prove some of

their basic properties. In order to study indecomposability in a general framework, we

introduce the notion of a root set.

2.1. Indecomposability definitions. Let M be a lattice which is isomorphic to Zn.

Let VR be the associated real vector space M⊗ZR and VQ the rational subspace M⊗ZQ.

Recall that a subset S of VR is contained in an open half-space of VR if there is a positive

definite inner product 〈 , 〉 on VR and an element δ in VR such that 〈δ, α〉 > 0 for all

α ∈ S. We define a root set to be a finite subset S of M such that S is contained in

an open half-space of VR and does not contain both α and cα for a scalar c 6= 1. An

element of a root set is often referred to as a root. A weight on a root set is a map

z : S → W , where W is a partially ordered set. If W consists of a single element and

z is the constant map, then the weight is said to be trivial. A root set with a weight

is called a weighted root set. Any subset of a root set is a root set, and any subset

of a weighted root set is a weighted root set. In our applications, M will be the root

lattice of a semisimple Lie algebra over an algebraically closed field of characteristic 0,

S a set of positive roots, and W the Weyl group of the Lie algebra, equipped with the

Bruhat-Chevalley order.

Definition 2.1. Let S be a root set. Let A ⊆ R and E ⊆ S. A linear combination

α =
∑
ciαi, with ci ∈ R≥0 and α, αi ∈ S, is said to be

• an A-linear combination if ci ∈ A for all i,

• in E or by elements of E if αi ∈ E for all i,

• a decomposition if αi 6= α for all i,

• an A-decomposition if ci ∈ A and αi 6= α for all i,

• an iso-decomposition if it is a Q-decomposition of the form α = cα1 + cα2

with ‖α1‖ = ‖α2‖,
• increasing if S is weighted and z(αi) ≥ z(α) for all i.

Elements of S for which there exists no decomposition are said to be indecom-

posable. Elements α ∈ S for which there exists no A-decomposition (resp. iso-

decomposition, increasing A decomposition) are said to be A-indecomposable (resp.

iso-indecomposable, increasing A-indecomposable); the set of all such α is de-

noted by SA (resp. S‡, S↑A).

When referring to A-linear combinations, A-decompositions, or A-indecomposability,

the term rational or integral is often substituted for A when A = Q or A = Z
respectively.
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S↑Q

SQ S‡ S↑Z

SZ

Figure 1. Relationships among five types of indecomposability. Ar-
rows represent inclusions.

Let S be a root set and A ⊆ R. Define

ConeA S =

{∑
ciαi : ci ∈ A≥0, αi ∈ S

}
⊆ VR.

The set S is said to generate ConeA S.

2.2. Basic properties of A-indecomposability.

Lemma 2.2. Let E and F be subsets of a root set S, and let A ⊆ R. Then

(i) F ∩ SA ⊆ FA.

(ii) F ∩ SA = FA ∩ SA.

(iii) If FA = EA, then F ∩ SA = E ∩ SA.

(iv) F ∩ SA = (F ∩ SA)A.

(v) If FA = F and E ⊆ F , then EA = E.

Proof. (i) If α ∈ F is A-indecomposable in S, then α is A-indecomposable in the smaller

set F .

(ii) Since FA ⊆ F , FA ∩ SA ⊆ F ∩ SA. By (i), F ∩ SA = (F ∩ SA) ∩ SA ⊆ FA ∩ SA.

(iii) By (ii), F ∩ SA = FA ∩ SA = EA ∩ SA = E ∩ SA.

(iv) Applying (i) twice, F ∩ SA = (F ∩ SA) ∩ FA ⊆ (F ∩ SA)A. The other inclusion is

clear.

(v) By (i), E = E ∩ F = E ∩ FA ⊆ EA, and the other inclusion is clear. �

Definition 2.3. If S is a root set with weight z : S →W , then we define Sz≥w = {s ∈
S | z(s) ≥ w}.

Lemma 2.4. Let S be a root set with weights z, x : S →W , and let A ⊆ R. Then

(i) (SA)z≥w ⊆ (Sz≥w)A.

(ii) (SA)z≥w = (Sz≥w)A ∩ SA.
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(iii) If (Sz≥w)A = (Sx≥w)A, then (SA)z≥w = (SA)x≥w.

(iv) (SA)z≥w = ((SA)z≥w)A.

Proof. Noting that Sz≥w ∩ SA = (SA)z≥w, one obtains (i) - (iv) of this lemma from (i)

- (iv) respectively of Lemma 2.2 by setting E = Sx≥w and F = Sz≥w. �

Remark 2.5. In this paper, (Sz≥w)A is more important than (SA)z≥w. The reason

is that the elements of (Sz≥w)A are used in decomposing elements of Sz≥w. To be

precise, in Section 3, we will show that an element of Sz≥w can be written in terms

of indecomposable elements of Sz≥w—that is, in terms of elements of (Sz≥w)A. In

Corollary 6.7, we show that if S is an inversion set in a root system of classical type or

of type G2, then (SA)z≥w = (Sz≥w)A.

3. Decomposing into indecomposables

The base ∆ ⊆ Φ+ consists of the roots γ ∈ Φ+ which cannot be expressed as a

sum γ = α + β, where α, β ∈ Φ+. In the literature, such roots γ are said to be

indecomposable. (This traditional usage differs from our definition of indecomposable

in Section 2.) A fundamental property of root systems is that every element of Φ+

is a positive integer linear combination of roots in ∆. It is well-known that a similar

property holds for SA ⊆ S, where A = Z or Q: every element of S is a positive A-linear

combination of roots in SA (for A = Q, see Remark 3.12).

In this section we show that an analogous property holds for S↑A ⊆ S, where S is

a weighted root set and A = Z or Q: every element α ∈ S is an increasing A-linear

combination of roots αi ∈ S↑A. If z(α) ≥ w, then, since the linear combination is

increasing, z(αi) ≥ w for all i. This proves Sz≥w ⊆ ConeA(S↑A ∩ Sz≥w), the main

result we will need from this section.

We first study increasing Z-linear combinations and then the more difficult case of

increasing Q-linear combinations. Recall that δ is chosen so that 〈δ, α〉 > 0 for all

α ∈ S.

Proposition 3.1. Let S be a weighted root set. Then every element of S \ S↑Z has an

increasing Z-decomposition by elements of S↑Z.

Proof. Let α ∈ S \ S↑Z. We can write α =
∑

i ciαi, where αi ∈ S satisfy z(αi) ≥ z(α),

and the ci are nonnegative integers, at least two of which are nonzero. For all i such

that ci 6= 0, 〈δ, αi〉 < 〈δ, α〉. By induction on 〈δ, ·〉, if αi /∈ S↑Z, then αi has an

increasing Z decomposition by elements of S↑Z. We conclude that α has an increasing

Z-decomposition by elements of S↑Z. �

The inductive proof above does not extend to the case of increasing Q-decompositions.

This is because 〈δ, αi〉 may not be strictly less than 〈δ, α〉. Hence the inductive iteration

may not terminate, as seen in the following example.
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Example 3.2. Suppose Φ is of type B2, S = Φ+ = {ε1, ε2, ε1 − ε2, ε1 + ε2}, and z is the

trivial weight. The element ε1 has a Q-decomposition

ε1 =
1

2
(ε1 + ε2) +

1

2
(ε1 − ε2). (3.1)

The long root ε1 +ε2 has a Q-decomposition as a sum of the short roots ε1 and ε2: write

this decomposition as ε1 + ε2 = (ε1) + (ε2). But now we can decompose the summand

ε1 as in (3.1). Substituting into (3.1), we obtain

ε1 =
1

2

(1

2
(ε1 + ε2) +

1

2
(ε1 − ε2) + ε2

)
+

1

2
(ε1 − ε2).

This process can be repeated indefinitely without terminating. Note that in this ex-

ample, S↑Q = {ε1 − ε2, ε2}, and ε1 = (ε1 − ε2) + ε2 is the desired Q-decomposition of ε1
by elements of S↑Q.

Thus, a more complicated approach is required in order to extend Proposition 3.1

to increasing Q-decompositions.

Lemma 3.3. Let α1, . . . , αn be distinct elements of a weighted root set S. Suppose

that αk =
∑n

i=1 ciαi with ci nonnegative rational numbers, z(αi) ≥ z(αk) whenever

ci 6= 0, and cj > 0 for some j 6= k. Then there exists an increasing Q-decomposition

αk =
∑n

i=1 diαi (with dk = 0).

Proof. We have

(1− ck)αk =
∑
i 6=k

ciαi. (3.2)

The right side of (3.2) has a positive inner product with δ; hence so does the left

side. This implies that ck < 1. Set di = ci/(1 − ck) for i 6= k, and dk = 0. If

di 6= 0, then ci 6= 0, so z(αi) ≥ z(αk). Hence αk =
∑n

i=1 diαi is our desired increasing

Q-decomposition. �

Lemma 3.4. Let S be a weighted root set. Suppose E1 = E ∪ {α} ⊆ S, where α /∈ E,

and suppose that α has an increasing Q-decomposition in E. Then any element of S

which has an increasing Q-decomposition in E1 has an increasing Q-decomposition in

E.

Proof. Since α has an increasing Q-decomposition in E, we see that |E| ≥ 2. Write

E = {α1, . . . , αn−1}, with n ≥ 3, and let αn = α. Let γ be an element of S with an

increasing Q-decomposition in E1, and let

γ =

n∑
i=1

ciαi (3.3)
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be such an increasing Q-decomposition. If cn = 0 we are done; thus assume cn 6= 0.

By hypothesis, there is an increasing Q-decomposition of αn in E:

αn =
n−1∑
i=1

diαi (3.4)

where we may assume that dj 6= 0 for some j such that αj 6= γ. Let ei = ci + cndi for

i < n; then ei ≥ 0 and

γ =
n−1∑
i=1

eiαi. (3.5)

Since cn 6= 0 and dj 6= 0, ej 6= 0. We claim that if ei > 0 then z(αi) ≥ z(γ). Indeed,

if ei > 0, then either ci > 0, in which case the claim follows since (3.3) is a increasing

Q-decomposition; or cndi > 0, in which case, since both (3.4) and (3.3) are increasing

Q-decompositions, we have z(αi) ≥ z(αn) ≥ z(γ). This proves the claim. If γ /∈ E,

then (3.5) is an increasing Q-decomposition of γ in E and we are done. Therefore,

suppose γ ∈ E. We claim that if one of the αi occurring in the summation of (3.5)

with ei > 0 is equal to γ, then this summation must have at least three terms with

nonzero coefficients. Indeed, suppose that αi = γ and ei > 0. Then ci = 0 (since γ

cannot have been one of the terms with nonzero coefficient in the summation of (3.3),

by definition of decomposition). Since (3.3) is a decomposition of γ, there must be

exist at least two positive ck in the summation (3.3). At least one of these must satisfy

k < n, and this yields ek > 0. So there are at least two nonzero terms in the summation

(3.5), namely eiαi and ekαk. These cannot be the only two nonzero terms, since γ = αi
but αk is not a multiple of αi (by the definition of root set). Therefore there must be at

least three nonzero terms in (3.5), proving the claim. Now apply Lemma 3.3 to obtain

an increasing Q-decomposition of γ in E. �

Lemma 3.5. If S is a nonempty weighted root set, then S↑Q is nonempty.

Proof. We prove the result by induction on |S|. If S has one element, then S = S↑Q

and the result holds. For the inductive step, suppose that S = E ∪ {α}, where |E| ≥ 1

and α 6∈ E. Our inductive hypothesis is that E↑Q is nonempty. If α is increasing

Q-indecomposable in S, then S↑Q contains α and we are done, so assume that α is

increasing Q-decomposable in S. We will show that S↑Q = E↑Q; this suffices.

Observe that S↑Q ⊆ E↑Q. This holds because any element of E which is increasing

Q-indecomposable in S remains increasing Q-indecomposable in the smaller set E;

moreover, α is increasing Q-decomposable in S. For the reverse inclusion S↑Q ⊇ E↑Q,

we require that if γ ∈ E does not have an increasing Q-decomposition in E, then it

does not have an increasing Q-decomposition in S. This follows from Lemma 3.4, with

E1 = S. �

Lemma 3.6. Let S be a weighted root set, let E and F be disjoint subsets of S, and

let E1 = E ∪ F . Suppose that any β ∈ F has an increasing Q-decomposition in E1.
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Then any γ ∈ S that has an increasing Q-decomposition in E1 has an increasing Q-

decomposition in E.

Proof. We may assume that F is nonempty, since otherwise the lemma is trivial.

Thus, by Lemma 3.5, (E1)↑Q is nonempty. Since F does not intersect (E1)↑Q, we

must have that E ⊇ (E1)↑Q, and thus E is nonempty. Let E = {α1, . . . , αr} and

F = {αr+1, . . . , αn}, where r ≥ 1 and n ≥ r + 1. Let C(j) be the assertion that αj
has an increasing Q-decomposition in {α1, . . . , αj−1}. We will show that C(j) holds

for j ∈ {r + 1, . . . , n}.
The assertion C(n) holds by hypothesis. Suppose that r + 1 ≤ j < n and that

C(j + 1), . . . , C(n) hold. We show by contradiction that C(j) holds as well. Assume

that it does not. Since j ≥ r + 1, αj has an increasing decomposition in E1. Let

αj =
m∑
i=1

ciαi (3.6)

be an increasing Q-decomposition for αj in E1 with m minimal. Since C(j) does not

hold, m ≥ j + 1. Since αj has an increasing Q-decomposition in {α1, . . . , αm} and, by

C(m), αm has an increasing Q-decomposition in {α1, . . . , αm−1}, Lemma 3.4 implies

that αj has an increasing Q-decomposition in {α1, . . . , αm−1}. This contradicts the

minimality of m and proves C(j). By induction, C(j) holds for j ∈ {r + 1, . . . , n}.
We now complete the proof of the lemma. Suppose that γ ∈ S has an increasing

Q-decomposition in E1 = {α1, . . . , αn}. Let m be the smallest integer such that γ has

an increasing Q-decomposition in {α1, . . . , αm}. We must show m ≤ r. If not, then

m ≥ r + 1, so by C(m), αm has an increasing Q-decomposition in {α1, . . . , αm−1}.
Lemma 3.4 then implies that γ has an increasing Q-decomposition in {α1, . . . , αm−1}.
This contradicts the minimality of m. We conclude that m ≤ r, as desired. �

Theorem 3.7. Let S be a weighted root set. Then every element of S \ S↑Q has an

increasing Q-decomposition by elements of S↑Q.

Proof. Every γ ∈ S \ S↑Q has an increasing Q-decomposition in S. Thus, by Lemma

3.6 with E = S↑Q and F = S \ S↑Q, every such γ has an increasing Q decomposition in

S↑Q. �

Corollary 3.8. Let S be a weighted root set, and let A = Q or Z. Then Sz≥w ⊆
ConeA((S↑A)z≥w).

Proof. Let α ∈ Sz≥w. By Theorem 3.7 and Proposition 3.1, α is a positive A-linear

combination of elements αi ∈ S↑A such that z(αi) ≥ z(α). Since z(α) ≥ w, z(αi) ≥ w

for all i, and thus each αi lies in Sz≥w. �

Remark 3.9. The reason that we introduce inceasing linear combinations in this paper

is that they preserve Sz≥w, in the sense that if α =
∑
ciαi is increasing and α ∈ Sz≥w,
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then αi ∈ Sz≥w for all i. This property is used to prove both the above corollary and

Lemma 5.2.

Corollary 3.10. Let S be a root set, and let A = Q or Z. Then S ⊆ ConeA(SA), and

thus ConeA(S) = ConeA(SA).

Proof. Take z to be the trivial weight in Corollary 3.8. �

Corollary 3.11. Let E, F be subsets of a root set S. Let A = Q or Z. Then

ConeA(E) = ConeA(F ) if and only if EA = FA.

Proof. Assume ConeA(E) = ConeA(F ). Suppose that there exists α ∈ EA \ FA. Then

α ∈ ConeA(E) = ConeA(F ) = ConeA(FA). Thus α =
∑

i ciαi, where αi ∈ FA,

and ci ∈ A≥0, at least two of which are nonzero (otherwise α ∈ FA). But since

αi ∈ FA ⊆ ConeA(E), α /∈ EA, a contradiction. Thus EA ⊆ FA, and similarly

FA ⊆ EA.

Conversely, if EA = FA, then ConeA(E) = ConeA(EA) = ConeA(FA) = ConeA(F ).

�

Remark 3.12. Proofs of Corollaries 3.10 and 3.11 for the case A = R can be obtained

by using the fact that if S is a root set, then ConeR S is a convex polyhedral cone,

and SR is equal to the set of elements of S which lie on the one-dimensional faces of

ConeR S (see [Ful93, Section 1.2]). One can then use the density of Q in R to obtain

alternative proofs of these two corollaries for the case A = Q.

4. Iso-indecomposability in inversion sets

In this section we introduce the notion of iso-decomposability. The main results of

this section, Theorem 4.11, and its corollaries, play a major role in this paper.

4.1. Preliminaries and notation. We keep the notation of Section 1.3. For the

remainder of this paper we limit attention to root sets S ⊆ Φ; our convention will be

that any statement involving A holds for A = Q, and if Φ is simply laced, it holds for

A = Z as well.

Recall that W denotes the Weyl group and S′ the set of simple reflections. The

0-Hecke algebra H associated to (W,S′) over a commutative ring R is the associative

R-algebra generated by Hu, u ∈ W , and subject to the following relations: H1 is the

identity element, and if u ∈ W and s ∈ S′, then HuHs = Hus if `(us) > `(u) and

HuHs = Hu if `(us) < `(u).

Throughout the paper, we will assume that we have chosen w ≤ x ∈ W and a

reduced expression s = (s1, . . . , sl), si ∈ S′, for x. Then xi, zi, and γi will have the

following meaning. For i ∈ {1, . . . , l}, define

• xi = s1 · · · ŝi · · · sl = sγix ∈W .
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• zi ∈W by the equation Hzi = Hs1 · · · Ĥsi · · ·Hsl .

• γi = s1 · · · si−1(αi) ∈ Φ, where αi is the simple root corresponding to si.

The equality xi = sγix is well-known; it follows from the equation sγi = (s1 · · · si−1)si(s1 · · · si−1)−1.

It is known that the elements γ1, . . . , γl enumerate I(x−1) = {α ∈ Φ+ | x−1(α) ∈ Φ−},
the inversion set of x−1 (see [Hum90, Exercise 5.6.1]).

Let w ∈ W , w ≤ x. For any root set S ⊆ I(x−1), define the Coxeter weight

x : S →W by x(γi) = xi, and the Demazure weight z : S →W by z(γi) = zi. Then

Sx≥w = {γi ∈ S | xi ≥ w} and Sz≥w = {γi ∈ S | zi ≥ w} (see Definition 2.3).

The main result of Section 4 is that for S = I(x−1), γi is iso-indecomposable in

S if and only if (s1, . . . , ŝi, . . . , sl) is reduced; in this case, zi = xi. Consequently,

(S‡)z≥w = (S‡)x≥w.

Remark 4.1. Since xi = sγix, the Coxeter weight x : I(x−1) → W , γi 7→ xi, is inde-

pendent of the reduced expression s for x. On the other hand, the Demazure weight

z : I(x−1) → W , γi 7→ zi, is not. (For example, let x = σ1σ2σ1 in type A2. For

s = (σ1, σ2, σ1), one checks that γ2 = α1 + α2 and z2 = σ1; for s = (σ2, σ1, σ2), we

again have γ2 = α1+α2, but now z2 = σ2.) The dependence of the Demazure weight on

s can be removed by restricting the domain to the set of iso-indecomposable elements

(since zi = xi if γi is iso-indecomposable).

4.2. Demazure products. If q = (r1, . . . , rk) is any (not necessarily reduced) se-

quence of simple reflections in S, define the Demazure product1 zq ∈ W by the equa-

tion Hzq = Hr1 · · ·Hrk , and define xq = r1 · · · rk. It is well known that if q is reduced,

then q contains a subexpression which multiplies to u if and only if xq ≥ u (see Theo-

rem 5.10 of [Hum90]). A generalization of this result in which q is not required to be

reduced is given by [KM04, Lemma 3.4(1)]:

Lemma 4.2. q contains a subexpression which multiplies to u ⇔ zq ≥ u.

Corollary 4.3. There exists a subexpression of q which is a reduced expression for zq.

Proof. By Lemma 4.2 with u = zq, q contains a subexpression which multiplies to zq,

and hence it contains a reduced subexpression which multiplies to zq. �

Corollary 4.4. We have

(i) zq ≥ xq, with equality if q is reduced.

(ii) zq ≥ zp if p is a subexpression of q.

Proof. (i) If q is reduced, then zq = xq by definition. The inequality is due to Lemma

4.2 with u = xq.

1In [KM04] and [GK22], the Demazure product zq is instead denoted by δ(q).
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(ii) By Corollary 4.3, there exists a subexpression p′ of p which is a reduced expression

for zp. By (i), xp′ = zp. Since p′ is a subexpression of p, it is a subexpression of q, so

by Lemma 4.2, zq ≥ xp′ . Hence zq ≥ zp, as required. �

Remark 4.5. In Corollary 4.4(i), equality can occur even if q is not reduced. For

example, if σ1 and σ2 denote the transpositions (1, 2) and (2, 3) respectively in type

A2, then for q = (σ1, σ1, σ2, σ1, σ2), zq = xq = σ1σ2σ1, although q is not reduced.

Corollary 4.6. zi ≥ xi for i ∈ {1, . . . , l}, with equality if (s1, . . . , ŝi, . . . , sl) is reduced.

Proof. This is a special case of Corollary 4.4(i). �

4.3. Iso-indecomposability in I(x−1).

Lemma 4.7. Let α, β, γ ∈ Φ+. If cα = β + γ and ‖β‖ = ‖γ‖, then c = 〈β, α∨〉 =

〈γ, α∨〉 > 0.

Proof. Since α, β, γ > 0, we must have c > 0. By applying 〈·, α∨〉 to both sides of the

equation cα = β + γ, we find that c = (1/2)〈β, α∨〉+ (1/2)〈γ, α∨〉. Since ‖β‖ = ‖γ‖,

(β, cα) = (β, β + γ) = ‖β‖2 + (β, γ) = ‖γ‖2 + (β, γ) = (γ, β + γ) = (γ, cα),

implying 〈β, α∨〉 = 〈γ, α∨〉, as desired. �

As a consequence, we obtain the following well-known fact.

Lemma 4.8. Let α, β, γ ∈ Φ+, where Φ is simply laced. If cα = β + γ and β 6= α,

then c = 1.

Proof. This follows from Lemma 4.7. �

Proposition 4.9. If S ⊆ Φ+ is a root set and Φ is simply laced, then SZ ⊆ S‡.

Proof. Suppose α is iso-decomposable in S. Then cα = β + γ, for some β, γ ∈ S. By

Lemma 4.8, c = 1. Thus α is integrally decomposable in S. �

Lemma 4.10. Let i, j, k ∈ [l].

(i) γi 6= γj if i 6= j.

(ii) If j < i then sj · · · s1(γi) > 0; otherwise sj · · · s1(γi) < 0.

(iii) If cγi = γj + γk, j < k, then j < i < k.

Proof. (i), (ii) See [Hum90, Section 1.7].

(iii) By Lemma 4.7, c > 0. Assume that i < j and i < k, and let y = si · · · s1. Then

cyγi = yγj + yγk. By (ii), cyγi < 0 and yγj + yγk > 0, contradiction. A similar

argument eliminates the possibility that i > j and i > k. (This proof also appears in

the proof of [Ste01, Theorem 5.3].) �
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The following theorem plays a central role in this paper: it is required for all sub-

sequent results of this section and the next. The theorem also illustrates how iso-

indecomposability arises naturally in the study of Coxeter groups and inversion sets.

Indeed, the problem of finding some property of γi which is equivalent to reducedness of

s1 · · · ŝi · · · sl initially led us to this theorem and the definition of iso-indecomposability.

Theorem 4.11. For i ∈ [l], the following are equivalent:

(i) s1 · · · ŝi · · · sl is not reduced.

(ii) There exist j < i < k such that αj = sj+1 · · · ŝi · · · sk−1(αk).

(iii) There exist j < k and c ∈ Q such that cγi = γj + γk and ‖γj‖ = ‖γk‖.
(iv) γi is iso-decomposable in I(x−1).

Moreover, in case one (and thus all) of these statements hold, it must be true that j <

i < k; and that j, k satisfy (ii) if and only if they satisfy (iii); and that c = 〈γk, γ∨i 〉 > 0.

Proof. (i) ⇔ (ii) See [Hum90, Theorem 1.7]; (iii) ⇔ (iv) by definition.

Now suppose j < i < k. Let β = si+1 · · · sk−1(αk). Then 〈γk, γ∨i 〉 = 〈s1 · · · siβ,−s1 · · · siα∨i 〉 =

〈−β, α∨i 〉. Thus

〈γk, γ∨i 〉γi = 〈−β, α∨i 〉γi
= s1 · · · si−1(〈−β, α∨i 〉αi)
= s1 · · · si−1(−β + siβ) = −s1 · · · ŝi · · · sk−1(αk) + γk.

(4.1)

(ii) ⇒ (iii) Let j < i < k be as in (ii). Substituting αj for sj+1 · · · ŝi · · · sk−1(αk) in

(4.1) produces 〈γk, γ∨i 〉γi = γj + γk.

(iii) ⇒ (ii) Lemma 4.10(iii) forces j < i < k. By Lemma 4.7, c = 〈γk, γ∨i 〉, so

〈γk, γ∨i 〉γi = γj +γk. Substituting this into (4.1), we obtain γj = −s1 · · · ŝi · · · sk−1(αk).

On the other hand, by definition, γj = s1 · · · sj−1(αj). Equating these two expressions

for γj and simplifying yields sj+1 · · · ŝi · · · sk−1(αk) = αj , as required. �

Corollary 4.12. Let S = I(x−1). If γi ∈ S‡, then zi = xi.

Proof. If γi ∈ S‡, then (s1, . . . , ŝi, . . . , sl) is reduced by Theorem 4.11, and thus zi = xi
by Corollary 4.6. �

Corollary 4.13. Let S = I(x−1). Then (S‡)z≥w = (S‡)x≥w and (SA)z≥w = (SA)x≥w.

Proof. The first equation is due to Corollary 4.12. Note that the first equation implies

that for any E ⊆ S‡, we have Ez≥w = Ex≥w. The second equation now follows by

observing that SQ ⊆ S‡, and if Φ is simply laced, then SZ ⊆ S‡ by Proposition 4.9. �

Remark 4.14. Corollary 4.13 proves the assertions of [GK22, Remark 5.9].
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5. Increasing and iso-indecomposability

In this section we show that for S = I(x−1) we have that S↑A ⊆ S‡, where increas-

ing A-decompositions are relative to the Demazure weight. Using this and results of

previous sections, we prove our main technical result: ConeA(Sz≥w) = ConeA(Sx≥w).

Lemma 5.1. Let S = I(x−1), and let γ ∈ S. If there exists an iso-decomposition of γ

in S, then there exists an increasing iso-decomposition of γ in S.

Proof. We have that γ = γi for some i. Assume that γi is iso-decomposable. By Theo-

rem 4.11, s1 · · · ŝi · · · sl is not reduced. Choose k > iminimal such that `(s1 · · · ŝi · · · sk) <
`(s1 · · · ŝi · · · sk−1), and then j < imaximal such that `(sj · · · ŝi · · · sk) < `(sj+1 · · · ŝi · · · sk).
It is shown in the proof of [Hum90, Theorem 1.7] that j, k satisfy Theorem 4.11(ii);

thus they satisfy Theorem 4.11(iii), i.e., cγi = γj + γk with ‖γj‖ = ‖γk‖. We will show

that zj , zk ≥ zi, thus completing the proof.

By choice of k, s1 · · · ŝi · · · sk−1 is reduced but s1 · · · ŝi · · · sk is not. Thus

Hs1 · · · Ĥsi · · ·Hsk−1
= Hs1···ŝi···sk−1

= Hs1···ŝi···sk−1
Hsk = Hs1 · · · Ĥsi · · ·Hsk

If we multiply on the right by Hsk+1
· · ·Hsl , we obtain Hs1 · · · Ĥsi · · · Ĥsk · · ·Hsl =

Hs1 · · · Ĥsi · · ·Hsl . Letting r = (s1, . . . , ŝi, . . . , ŝk, . . . , sl), we have zr = zi. Since r

is a subexpression of (s1, . . . , ŝk, . . . , sl), Corollary 4.4(ii) implies zk ≥ zr. Therefore

zk ≥ zi.
Using the fact that sj+1 · · · ŝi · · · sk is reduced but sj · · · ŝi · · · sk is not, a similar

argument yields zj ≥ zi. �

Lemma 5.2. Let S = I(x−1), and let γ ∈ Sz≥w. If there exists an iso-decomposition

of γ in S, then there exists an iso-decomposition of γ in Sz≥w.

Proof. This follows from Lemma 5.1 and the fact that increasing linear combinations

preserve Sz≥w (see Remark 3.9). �

Proposition 5.3. Let S = I(x−1). Then S↑A ⊆ S‡.

Proof. Suppose γi /∈ S‡. By Lemma 5.1, there exist j, k such that cγi = γj + γk
is increasing and c ∈ Q. If Φ is simply laced, then c = 1, by Lemma 4.7. Thus

γi /∈ S↑A. �

Corollary 5.4. Let S = I(x−1). Then (Sz≥w)‡ = (S‡)z≥w.

Proof. By definition, (S‡)z≥w = S‡ ∩ Sz≥w. The inclusion (Sz≥w)‡ ⊇ (S‡)z≥w holds

because any element of Sz≥w that is iso-indecomposable in S is iso-indecomposable in

the smaller set Sz≥w. The reverse inclusion is the contrapositive of Lemma 5.2. �

Corollary 5.5. Let S = I(x−1). Then ConeA(Sz≥w) = ConeA(Sx≥w), or equivalently,

(Sz≥w)A = (Sx≥w)A.
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Proof. Since xi ≤ zi for all i, ConeA(Sx≥w) ⊆ ConeA(Sz≥w). The other inclusion follows

from Sz≥w ⊆ ConeA((S↑A)z≥w) ⊆ ConeA((S‡)z≥w) = ConeA((S‡)x≥w) ⊆ ConeA(Sx≥w),

where the first and second inclusions are due to Propositions 3.8 and 5.3, and the equal-

ity is due to Corollary 4.13. The equivalence of the second equality of this corollary is

due to Corollary 3.11. �

Remark 5.6. By Lemma 2.4(iii), Corollary 5.5 is a stronger statement than (SA)z≥w =

(SA)x≥w, which was proved in Corollary 4.13.

6. Equivalent indecomposabilities

The main theorem of this section is the following.

Theorem 6.1. Let Φ be of classical type or of type G2, and let S = I(x−1). Let α ∈ S.

Then α is rationally indecomposable ⇔ α is iso-indecomposable. If Φ is simply laced,

these conditions are equivalent to the condition that α is integrally indecomposable.

A more precise statement, Proposition 6.4, is given in Section 6.1. The special case

of S = Φ+ is studied in Section 6.2.

The equivalence of indecomposabilities given by Theorem 6.1, which we view as

of independent interest, has two main applications in this paper. First, it is used in

this section to prove that in classical types and type G2, for S = I(x−1), we have

(SA)z≥w = (Sz≥w)A and (SA)x≥w = (Sx≥w)A. In Section 9, we show that the first

of these equalities implies that in classical types and type G2, ΦKL
tan ∩ SA = (ΦKL

tan)A.

Second, it allows us to prove Corollary 7.4: in types A and D, x is fully commutative if

and only if all elements of I(x−1) are integrally indecomposable. This leads, in Section

10, to smoothness criteria for fully commutative x in types A and D.

6.1. Indecomposability in closed subsets of Φ+. It is convenient to introduce the

following characterization of inversion sets, which is a slight variation of the charac-

terization given by Papi [Pap94]. We shall say that a root set S ⊆ Φ+ is closed if (i)

α, β ∈ S and rα + sβ ∈ Φ for positive real numbers r and s imply rα + sβ ∈ S, and

(ii) α, β ∈ Φ+ and α + β ∈ S imply α ∈ S or β ∈ S. The following lemma is a simple

consequence of Papi’s characterization.

Lemma 6.2. Let S ⊆ Φ+. Then S is closed ⇔ S = I(x−1) for some x ∈W .

Proof. Consider the condition (i′): α, β ∈ S and α+ sβ ∈ Φ s implies α+ β ∈ S. Papi

proved that S satisfies (i′) and (ii) if and only if S is of the form I(x−1).

Suppose S is closed. Since S satisfies (i) and (ii), it satisfies (i′) and (ii), so S =

I(x−1) for some x ∈ W . Conversely, suppose S = I(x−1). The set S satisfies (ii) by

Papi’s result. If α, β ∈ S and rα + sβ ∈ Φ for positive real numbers r and s, then

x−1α and x−1β are negative roots, so the root x−1(rα+ sβ) must be negative as well
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(because when written as a sum of simple roots, all coefficients of x−1(rα + sβ) are

negative). Hence rα+ sβ ∈ S, so S satisfies (i). Hence S is closed. �

Theorem 6.1 is an immediate consequence of Proposition 6.4 below. We divide the

proof into smaller steps by introducing a new variation of indecomposability.

Definition 6.3. Let S be a root set. A rational decomposition in S of the form

α = c1α1 + c2α2 is called a bi-decomposition of α. The element α is called bi-

decomposable if α has a bi-decomposition and bi-indecomposable otherwise.

Proposition 6.4. Let S be a closed subset of Φ+ and let α ∈ S. Consider the following

conditions:

(i) α is iso-decomposable.

(ii) α is bi-decomposable.

(iii) α is rationally decomposable.

(iv) α is integrally decomposable.

We have (i) ⇔ (ii) ⇒ (iii) ⇐ (iv). If Φ is of classical type or of type G2, then (iii) ⇒
(ii) and thus (i) – (iii) are equivalent. If Φ is simply laced, then (i) ⇒ (iv). Thus in

types A and D, (i) - (iv) are equivalent.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇐ (iv) is clear from the definitions; (i) ⇒ (iv) if Φ is simply

laced, by Proposition 4.9.

(ii) ⇒ (i) We first provide several facts about rank 2 root systems, referring the reader

to [Ser01, Ch. 5, §3 and §7] for additional background and details. There are four rank

2 root systems: A1 × A1, A2, B2, and G2. Every root λ of a rank 2 root system has

two “nearest neighbors”, one to either side, which we denote by λ′ and λ′′. One checks

that |λ′| = |λ′′|, and in types A2, B2, and G2, λ = cλ′ + cλ′′, where c = 1 or c = 1/2.

This gives an iso-decomposition of λ in Φ.

Since α is bi-decomposable, we can write

α = rβ + tγ (6.1)

where r, t are positive rational numbers, β, γ ∈ S, and α, β, γ are distinct. Let X =

{α, β, γ}. Since the three elements of X are distinct, they do not lie on the same line

through 0. By (6.1), they lie on the same plane through 0. Thus the R span of X,

which we denote by VX , is two dimensional. By [Bou02, Ch. VI, §1, no. 1, Prop. 4(ii)],

ΦX := Φ ∩ VX is a root system. Its rank is two, and thus it must be of type A1 × A1,

A2, B2, or G2. Since it contains X, and X contains three elements none of which is

the negative of any other, we can rule out type A1 ×A1.

Let C = ConeR{β, γ} = {xβ + yγ : x, y ∈ R, x, y ≥ 0}, the convex polyhedral cone

generated by {β, γ}. Geometrically, C is the locus of points in VX lying on or between

the ray through β and the ray through γ. By (6.1), α is in the interior of C. Since
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β, γ ∈ ΦX , it follows that α′, α′′, the nearest neighbors to α in ΦX , must also lie in C.

Since β, γ ∈ S and α′, α′′ ∈ Φ, condition (i) of S being closed implies α′, α′′ ∈ S. As

shown above, α = cα′ + cα′′, where c = 1 or c = 1/2. Hence α is iso-decomposable in

S.

(iii) ⇒ (ii) if Φ is of classical type. We proceed by contradiction. Suppose that α is

rationally decomposable but not bi-decomposable. Then we can write α = r1α1 + · · ·+
rnαn, where n ≥ 3, ri positive rational numbers, αi ∈ Φ+ distinct, and αi 6= α, but we

cannot express α as such a linear combination with n = 2. Clearing denominators, we

obtain

dα = m1α1 + · · ·+mnαn, (6.2)

where d,m1, . . . ,mn are positive integers. Among such expressions, consider those with

dminimal; among these, consider those withm1+· · ·+mn minimal; among these, choose

one with m1|α1|2 + · · ·+mn|αn|2 minimal. Assume that d, n, m1, . . . ,mn, α1, . . . , αn
are so chosen. We can rewrite (6.2) as

α+ · · ·+ α = (α1 + · · ·+ α1) + · · ·+ (αn + · · ·+ αn), (6.3)

where α occurs d times and each αi occurs mi times. The total number of summands

on the right hand side is m1 + · · ·+mn.

We make several preliminary observations about (6.3): for all i, j such that i 6= j,

(a) αi + αj is not an integer multiple of α.

(b) αi + αj /∈ Φ+.

(c) (αi, αj) ≥ 0.

(d) (α, αi) > 0.

To prove (a), note that if αi + αj = eα for some positive integer e, then α is bi-

decomposable in S, a contradiction. To prove (b), suppose that αi + αj ∈ Φ+. Then,

since S is closed, αi+αj ∈ S. Thus two summands αi, αj on the right hand side of (6.3)

can be replaced by the single summand αi+αj . This replacement decreasesm1+· · ·+mn

by 1, contradicting the minimality of this sum. Now (c) follows immediately from (b)

and (d) follows from (c), since (α, αi) = (1/d)
∑
mj(αj , αi) > 0.

Let us recall the positive roots of classical type:

An−1 Φ+ = {εp − εq : 1 ≤ p < q ≤ n}
Bn Φ+ = {εp ± εq : 1 ≤ p < q ≤ n} ∪ {εp : 1 ≤ p ≤ n}
Cn Φ+ = {εp ± εq : 1 ≤ p < q ≤ n} ∪ {2εp : 1 ≤ p ≤ n}
Dn Φ+ = {εp ± εq : 1 ≤ p < q ≤ n}

Based on these representations, we can make an additional observation about (6.3):

(e) Suppose that some αi has a component of εs but α does not. Then αi = εr±εs
for some r < s, and there exists j such that αj = εr ∓ εs. Moreover, α has a

component of εr with positive coefficient.
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Indeed, since αi has a component of εs but α does not, some αj must have a component

of εs but with coefficient of opposite sign. This results in (αi, αj) < 0, unless αi = εr±εs
and αj = εr ∓ εs for some r < s. The final claim of (e) now follows from (d), which

tells us that (α, αi) > 0 and (α, αj) > 0.

If α = εp− εq (in any type), then all terms on the right hand side of (6.3) must be of

the form εa−εb (since the sum of the coefficients of the εi is 0). There must be one root

αi on the right hand side of (6.3) of the form εr − εq, with r 6= p, since the coefficient

of εq is negative. Then since the coefficient of εr in the sum is 0, there must be a root

αj of the form εa− εr, but then (αi, αj) = −1, which is impossible by (c). Therefore α

is not of the form εp − εq. This completes the proof for type An−1.

If α = εp in type Bn or α = 2εp in type Cn, then some αi must be of the form εp± εs,
s 6= p. By (e), p < s and some αj must be of the form εp∓ εs. But this contradicts (a).

Therefore α is not of the form εp in type Bn or 2εp in type Cn.

Hence, α = εp + εq in type Bn, Cn, or Dn. Suppose that some αi = εp − εq. Then,

since α has a component of εq with positive coefficient, some αj must as well. But then

(αi, αj) < 0, contradicting (c). We conclude that no αi equals εp − εq.
Consider types Bn and Cn. Some αi must have a component of εs which α does

not. (In type Cn, this is true because the only alternative is αi = 2εp, αj = 2εq for

some i, j, contradicting (a). In type Bn, a similar argument applies.) Thus, by (e),

either αi is of the form εp ± εs and there exists j such that αj is of the form εp ∓ εs,
or αi is of the form εq ± εs and there exists j such that αj is of the form εq ∓ εs.

Assume the former; the proof for the latter is similar. In type Bn, since S is closed,

εp = (1/2)αi+(1/2)αj ∈ S. Thus αi, αj , two summands of the right hand side of (6.3),

can be replaced by εp, εp. With this replacement, m1|α1|2 + · · ·+mn|αn|2 decreases by

2, contradicting the minimality of this quantity. In type Cn, 2εp = αi + αj ∈ S. Now

αi, αj can be replaced by the single root 2εp. This replacement decreases m1 + · · ·+mn

by 1, contradicting the minimality of this sum. This completes the proof for types Bn
and Cn.

This leaves only the possibility that α = εp + εq in type Dn. We have seen that no

αi equals εp − εq. By (e), all of the αi are of the form εp ± εa and εq ± εb, where a, b

are not equal to either p or q. Note that we cannot have both εp + εa and εq − εa on

the right hand side, since the inner product would be −1. Similarly, we cannot have

both εp − εa and εq + εa on the right hand side. All coefficients except those of εp and

εq are 0, so we conclude that on the right hand side, εp + εa occurs iff εp − εa occurs,

and εq + εb occurs iff εq− εb occurs. By minimality of the expression (6.3), we conclude

that this expression must have the form

2(εp + εq) = (εp + εa) + (εp − εa) + (εq + εb) + (εq − εb) (6.4)

for a, b not equal to p or q, and a 6= b. Now, εp + εa ∈ S, and

εp + εa = (εp − εq) + (εa + εq).



22 WILLIAM GRAHAM AND VICTOR KREIMAN

Since S is closed, at least one of the roots εp− εq or εa+ εq must be in S. If εp− εq ∈ S,

then εp − εb is in S as it is the sum (εp − εq) + (εq − εb), where both summands are in

S; but then

α = εp + εq = (εp − εb) + (εq + εb),

which contradicts the assumption that α is not bi-decomposable. On the other hand,

if εa + εq ∈ S, then

α = εp + εq = (εp − εa) + (εa + εq),

again contradicting the assumption that α is not bi-decomposable.

(iii) ⇒ (ii) if Φ is of type G2. The root system G2 was discussed above in the proof of

(ii) ⇒ (i). Its six positive roots lie in a half-plane. Suppose that α ∈ S is rationally

decomposable. Then α = r1α1 + · · ·+ rtαt for some t ≥ 2, αi ∈ S distinct, αi 6= α, and

ri ∈ Q>0. Let β and γ be the leftmost and rightmost roots of α1, . . . , αt. Then β and

γ lie on the two edges of ConeR{α1, . . . , αt}. Thus

α ∈ ConeQ{α1, . . . , αt} = ConeQ{β, γ},
implying α is bi-decomposable. �

The proof of the implication (iii)⇒ (ii) in classical types is clearly the most difficult

part of this proof. The question of whether this implication holds in types En and F4

is open.

Remark 6.5. If Φ is not simply laced, then rational decomposability is not equivalent

to integral decomposability. For example, in type B2, one can check that the subset

S = {ε1−ε2, ε1, ε1 +ε2} ⊆ Φ+ is closed. In S, the roots ε1−ε2 and ε1 +ε2 are rationally

indecomposable, but ε1 is not. However, all three are integrally indecomposable.

Proposition 6.6. If S = I(x−1) and Φ is of classical type or of type G2, then

(Sz≥w)A = (Sz≥w)‡.

Proof. The inclusion⊆ holds because anyA-indecomposable element is iso-indecomposable.

We prove the reverse inclusion. Suppose γ ∈ (Sz≥w)‡. If γ is A-decomposable in Sz≥w,

then γ is A-decomposable in S, so by Theorem 6.1, γ is iso-decomposable in S. By

Lemma 5.2, γ is iso-decomposable in Sz≥w, a contradiction. Hence γ ∈ (Sz≥w)A. �

Suppose that S = I(x−1). One sees easily (see Lemma 2.4(i)) that (SA)z≥w ⊆
(Sz≥w)A and (SA)x≥w ⊆ (Sx≥w)A. The following corollary shows that in classical

types and type G2, all four of these sets are equal.

Corollary 6.7. If S = I(x−1) and Φ is of classical type or of type G2, then (SA)x≥w =

(Sx≥w)A = (SA)z≥w = (Sz≥w)A.

Proof. By Corollary 5.5 and Remark 5.6, (SA)x≥w = (SA)z≥w and (Sx≥w)A = (Sz≥w)A.

The proof is completed by observing that

(SA)z≥w = (S‡)z≥w = (Sz≥w)‡ = (Sz≥w)A,
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where the first equality is due to Theorem 6.1, the second to Corollary 5.4, and the

third to Proposition 6.6. �

Remark 6.8. This corollary implies that if x is fixed and one wants to calculate (Sz≥w)A

for multiple z, it is not necessary to check indecomposability separately for each z.

Rather, one can compute the set SA of A-indecomposable elements in S, and then

intersect with Sz≥w.

Figure 2 summarizes the relationships we have found among the five main types of

indecomposability in I(x−1). For general root sets, rational indecomposability implies

the other four types (see Figure 1). The other four implications of Figure 2 are proved

in Propositions 4.9, 5.3, and 6.4.

S↑Q

SQ S‡ S↑Z

SZ

S=I(x−1)
classical type, type G2

S=I(x−1)
simply laced

S
=

I
(x

−
1
)

S
⊆

Φ
+

si
m

p
ly

la
c
e
d

Figure 2. Relationships among five types of indecomposability. Ar-
rows represent inclusions. (See also Figure 1 on page 8.)

6.2. Indecomposability in Φ+. When S = Φ+, several types of indecomposability

are easily proved to be equivalent in all types. This is due to the following properties

of the base ∆ of Φ+:

(a) ∆ is linearly independent.

(b) Each root of Φ+ is a non-negative integer linear combination of elements of ∆.
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(c) Any root of Φ+ not in ∆ can be written as a sum of two positive roots.

Proposition 6.9. Let S = Φ+ and α ∈ S. The following conditions are equivalent:

(i) α is iso-decomposable.

(ii) α is bi-decomposable.

(iii) α /∈ ∆.

(iv) α is integrally decomposable.

(v) α is rationally decomposable.

Proof. (iii) ⇒ (iv) ⇒ (v) ⇐ (i) are clear from the definitions, (ii) ⇐ (iii) follows from

(c), and (i) ⇐ (ii) holds by Proposition 6.4.

(iii) ⇐ (v) is an immediate consequence of (a) and (b). Indeed, let α ∈ ∆. If β is

an element of Φ+ \ {α}, then a (nonnegative) linear combination for β in the elements

of ∆ must contain at least one term other than α. Thus the same is true if β is

a nontrivial nonnegative linear combination of elements of Φ+ \ {α}. Therefore a

nonnegative linear combination of elements of Φ+ \ {α} cannot equal α, i.e., α is

rationally indecomposable. �

Corollary 6.10. (xΦ−)‡ = x∆− = (xΦ−)Z = (xΦ−)Q.

Proof. This follows from Proposition 6.9, as x is a length-preserving linear automor-

phism of Φ. �

7. When all elements are indecomposable

In this section we study root sets S ⊆ Φ+. We are interested in examining conditions

under which all elements of S are rationally, integrally, or iso-indecomposable. When

this occurs, results in other sections concerning such indecomposable elements of S will

of course apply to all elements of S.

We say that S is coplanar if there exists v ∈ t such that α(v) = −1 for all α ∈
S. If I(x−1) is coplanar, then x is said to be a cominuscule Weyl group element.

Cominuscule Weyl group elements were first studied by Peterson.

The Weyl group element x is said to be fully commutative if there does not

exist a reduced expression for x which contains a subword of the form sisjsi · · · of

length m ≥ 3, where m is the order of sisj . In [BJS93], Billey, Jockusch, and Stanley

showed that in type A, fully commutative Weyl group elements can alternatively be

characterized as 321-avoiding permutations, and that their Schubert polynomials are

flag skew Schur functions. Full commutativity was studied extensively by Fan and

Stembridge in [Fan95], [Fan97], [FS97], [Ste96], [Ste97].

Theorem 7.1. If x is a cominuscule Weyl group element, then x is fully commutative.

Proof. This result is due to Stembridge (see [Ste01, Proposition 2.1]). �
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Theorem 7.2. For S ⊆ Φ+, consider the following statements:

(i) S is coplanar.

(ii) SZ = S.

(iii) S does not contain three roots of the form α, β, α+ β.

(iv) SQ = S.

(v) S‡ = S.

(vi) x is fully commutative.

We have (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (ii). If Φ is simply laced, then (iii) ⇔ (v). If

Φ is simply laced and S = I(x−1), then (i) ⇒ (iv) and (iii) ⇔ (vi). (See Figure 3.)

(i) S coplanar (ii) SZ = S (vi) x fully commut.

(iv) SQ = S (iii) @α, β, α+ β ∈ S (v) S‡ = S

S
=
I
(x
−
1
)

sim
p

ly
la

ced

simply laced

S=I
(x
−1 )

sim
ply

lac
ed

Figure 3. To accompany Theorem 7.2. Arrows represent implications.
Labelings of an arrow indicate conditions under which the implication
or equivalence holds.

Proof. (i) ⇒ (ii) is proved in the same manner as [GK22, Proposition 6.4], but with

I(x−1) replaced by S; (ii) ⇒ (iii) is clear from definitions; (iv) ⇒ (ii) since SQ ⊆ SZ;

(iii)⇔ (v) if Φ is simply laced follows from Lemma 4.8; (iii)⇔ (vi) if Φ is simply laced

and S = I(x−1) by [FS97, Theorem 2.4].

(i) ⇒ (iv) if Φ is simply laced and S = I(x−1). Assume S is coplanar. Then for all

α, β ∈ S, (α, β) ≥ 0. Indeed, if this were not true, then we would have α + β ∈ Φ+.

Since S = I(x−1) is closed under addition, this would imply α+ β ∈ S, violating (iii).

Suppose there exists β ∈ S \ SQ. Let

β =
∑

riβi (7.1)

ri ∈ Q>0, βi ∈ S \ {β} be a positive rational decomposition of β. Applying ( · , βi) to

both sides of (7.1) yields (β, βi) > 0. Thus 〈βi, β〉 = 1.



26 WILLIAM GRAHAM AND VICTOR KREIMAN

Applying 〈·, β〉 to both sides of (7.1), we obtain 2 =
∑
ri. Let v be such that

α(v) = 1 for all α ∈ S. Applying v to both sides of (7.1), we find that 1 =
∑
ri, a

contradiction. �

Remark 7.3. Some of the conclusions of Theorem 7.2 (i) - (vi) can be strengthened.

For example, (iii) ⇒ (vi) does not require S to be simply laced (although the converse

does).

Corollary 7.4. If Φ is of type A or D, then all elements of I(x−1) are integrally

indecomposable if and only if x if fully commutative.

Proof. In types A and D, I(x−1)Q = I(x−1)‡, by Proposition 6.4. Thus, in Theorem

7.2, conditions (ii) through (vi) are equivalent (see Figure 3). �

Remark 7.5. In [GK22, Remark 6.5], the Weyl group element x = s2s1s3s4s2 of type

D4 is considered. It is observed that all elements of I(x−1) are integrally indecom-

posable, but x is not cominuscule (see [Ste01, Remark 5.4]). Nevertheless, x is fully

commutative, as required by Corollary 7.4. Note that Stembridge’s results apply since

cominuscule Weyl group elements are exactly the minuscule elements for the dual root

system (see [GK21, Section 5.2]).

8. Tangent spaces and T -invariant curves

In this section we recall some known results on tangent spaces and T -invariant curves

of Schubert and Kazhdan-Lusztig varieties in G/P . We include some proofs for the

convenience of the reader. Fix w ≤ x ∈WP .

8.1. Schubert and Kazhdan-Lusztig varieties. We use the notation of Section 1.3.

Let Uα denote the root subgroup of G corresponding to α ∈ Φ. If V is a unipotent

subgroup of G normalized by T , then Uα ⊆ V if and only if α ∈ Φ(V ); otherwise Uα∩V
is the identity. Moreover, V ∼=

∏
α∈Φ(V ) Uα.

Part (i) of the next lemma goes back at least to [Kos61], and part(ii) is an immediate

consequence. Part (iii), which also follows easily from (i), is used implicitly in [Knu09,

Section 7.3].

Lemma 8.1. We have

(i) xΦ−P ∩ Φ+ = I(x−1).

(ii) xΦ−P = (xΦ−P ∩ Φ−) t I(x−1).

(iii) U−P (x) ∩ U = U−(x) ∩ U .

Proof. (i) By definition, I(x−1) = xΦ−∩Φ+. The left coset analogue of [Kos61, Remark

5.13] states, in our notation, that x(Φ+ \ Φ+
P ) ⊆ Φ+. Thus x(Φ− \ Φ−P ) ⊆ Φ−. This

implies that I(x−1) = xΦ− ∩ Φ+ = xΦ−P ∩ Φ+, as claimed.
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(ii) xΦ−P = (xΦ−P ∩ Φ−) t (xΦ−P ∩ Φ+) = (xΦ−P ∩ Φ−) t I(x−1), by (i).

(iii) Uα ⊆ U−P (x) ∩ U if α ∈ xΦ−P ∩ Φ+, and Uα ⊆ U−(x) ∩ U if α ∈ I(x−1). By (i),

xΦ−P ∩Φ+ = I(x−1). Hence U−P (x)∩U and U−(x)∩U contain the same root subgroups,

so they are equal. �

Combining this lemma with a well-known fact about the Bruhat order, we obtain

the following corollary.

Corollary 8.2. Let w ≤ x ∈ WP . Then xΦ−P ∩ Φ+ = I(x−1) = {α ∈ xΦ−P | sαx < x}
and xΦ−P ∩ Φ− = {α ∈ xΦ−P | sαx > x}.

Proof. Let α ∈ Φ. Observe that sαx > x if and only if x−1sα > x−1 if and only if α

and x−1α have the same sign. Thus, if α ∈ xΦ−P , then sαx > x implies α ∈ xΦ−P ∩Φ−,

and sαx < x implies α ∈ xΦ−P ∩ Φ+ = I(x−1). �

As noted in Section 1.3, the T -fixed points in G/P are the cosets zP for z ∈WP . We

will sometimes denote the fixed point zP simply by z, when it is understood that we

are considering a point in G/P . The Kazhdan-Lusztig variety Y w
x is the intersection of

the Schubert variety Xw with the opposite Schubert cell X0
x = B ·xP . It is irreducible

of dimension `(x)− `(w) (see [KL80, 1.4]), and is an open subvariety of the Richardson

variety Xw ∩ Xx. The unipotent subgroup U−P (x) embeds as an open subset of G/P

under the mapping U−P (x)→ U−P (x)xP , and X0
x = BxP = (U−P (x)∩U)xP ⊆ U−P (x)xP .

Thus,

Y w
x = Xw ∩ (U−P (x) ∩ U)xP. (8.1)

We see that Y w
x is an affine subvariety of (U−P (x) ∩ U)xP ∼= U−P (x) ∩ U . As observed

by Kazhdan and Lusztig (in the setting of the full flag variety G/B), a neighborhood

of Xw near xP is isomorphic to the product of Y w
x with an affine space (see [KL79,

Lemma A4]). In the G/P setting, this takes the form of a T -equivariant isomorphism

Xw ∩ U−P (x)xP ∼= Y w
x × (U−P (x) ∩ U−)xP. (8.2)

Note that (U−P (x) ∩ U−)xP = B−xP = Xx
0 . The T -fixed points of Xw are the cosets

zP ∈ G/P such that z ∈ WP and z ≥ w, whereas xP is the unique T -fixed point of

Y w
x .

We remark that although Kazhdan and Lusztig considered the full flag variety G/B,

we have followed [Knu09] and used the term Kazhdan-Lusztig variety in the G/P

setting. A more detailed discussion of slices such as this may be found in [GK21].

8.2. T -invariant curves of Schubert and Kazhdan-Lusztig varieties. In this

section we recall some results describing the sets of weights of tangent spaces and of

T -invariant curves of Schubert varieties and Kazhdan-Lusztig varieties. These are ob-

tained from the decomposition (8.2), as well as the description by Carrell and Peterson
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of the T -invariant curves in Schubert varieties (see the proof of Proposition 8.3(i)).

They will be used in the proof of our main result in the next section.

If Z is a variety with a T -action, then a T -invariant curve of Z is defined to be an

irreducible curve C which is closed in Z and stable under the T -action, i.e., t · C ⊆ C

for all t ∈ T . If z is a T -fixed point of Z, then denote the set of all T -invariant

curves of Z containing z by E(Z, z). Denote the tangent space to Z at z by TzZ, and∑
C∈E(Z,z) TxC ⊆ TzZ by TEzZ.

The T -invariant curves in G/P are the curves of the form UαxP , where x ∈ WP

and α ∈ xΦ−P . Such a curve is isomorphic to P1, and is equal to UαxP ∪ {sαxP}. If Z

is a T -invariant subvariety of G/P containing xP , then E(Z, x) consists of the curves

UαxP such that UαxP ∩ Z has dimension 1. Hence E(Z, x) is determined by the set

of weights Φ(TExZ), since UαxP ∩ Z ∈ E(Z, x) if and only if α ∈ Φ(TExZ).

The description by Carrell and Peterson of T -invariant curves in Schubert varieties

yields the following result.

Proposition 8.3. Let w ≤ x ∈WP .

(i) Φ(TExX
w) = {α ∈ xΦ−P | sαx ≥ w}.

(ii) Φ(TExY
w
x ) = {α ∈ I(x−1) | sαx ≥ w}.

Proof. (i) By the result of Carrell and Peterson (see [Car94], [CK03]),

E(Xw, xP ) = {UαxP | α ∈ xΦ−P , sαx ≥ w}. (8.3)

By the discussion before the proposition, this is equivalent to (i).

(ii) The definition of Y w
x implies that E(Y w

x , x) is the intersection of E(Xw∩U−P (x)xP, x)

and E((U−P (x) ∩ U)xP, x). By (i),

E(Xw ∩ U−P (x)xP, x) = {UαxP | α ∈ xΦ−P , sαx ≥ w}. (8.4)

Also, we have UαxP ⊆ (U−P (x) ∩ U)xP ⇔ Uα ⊆ U−P (x) ∩ U ⇔ α ∈ Φ(U−P (x) ∩ U) =

xΦ−P ∩ Φ+ = I(x−1) (here we have used Lemma 8.1). Thus,

E((U−P (x) ∩ U)xP, x) = {UαxP | α ∈ I(x−1)}. (8.5)

Hence,

E(Y w
x , xP ) = {UαxP | α ∈ I(x−1), sαx ≥ w}, (8.6)

which implies (ii). �

For later use, we summarize some facts about weights of tangent spaces and T -

invariant curves in the following corollary.

Corollary 8.4. Let w ≤ x ∈WP .

(i) Φ(TxX
w) ⊆ xΦ−P .

(ii) Φ(TxX
w) = (xΦ−P ∩ Φ−) t Φ(TxY

w
x ) = {α ∈ xΦ−P | sαx > x} t Φ(TxY

w
x ).
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(iii) Φ(TxY
w
x ) = Φ(TxX

w) ∩ I(x−1).

(iv) Φ(TExX
w) = (xΦ−P ∩ Φ−) t Φ(TExY

w
x ).

(v) Φ(TExY
w
x ) = Φ(TExX

w) ∩ I(x−1) = {α ∈ xΦ−P | x > sαx ≥ w}.

Proof. (i) TxX
w ⊆ Tx(G/P ) ∼= U−P (x), which has weights xΦ−P .

(ii) The first equality follows from the decomposition (8.2) (it also appears in [GK22,

Lemma 6.2(i)]). The second then follows from Corollary 8.2.

(iii) This follows from (i), (ii), and Lemma 8.1(ii).

(iv) By Lemma 8.1(ii) and Proposition 8.3, Φ(TExX
w) = {α ∈ xΦ−P ∩ Φ− | sαx ≥

w} t Φ(TExY
w
x ). But by Corollary 8.2, for all α ∈ xΦ−P ∩ Φ−, sαx ≥ w.

(v) The first equality follows from (i), (iv), and Lemma 8.1(ii). The second can be

deduced from Proposition 8.3(i) and Corollary 8.2. �

9. Indecomposable weights of tangent spaces and T -invariant curves

Fix w ≤ x ∈ WP . Define Φtan = Φ(TxX
w), Φcur = Φ(TExX

w), ΦKL
tan = Φ(TxY

w
x ),

and ΦKL
cur = Φ(TExY

w
x ). We refer to Φtan and ΦKL

tan as sets of tangent weights, and Φcur

and ΦKL
cur as sets of curve weights.

In this section we prove the main result of this paper, Theorem 1.1 (see Corollary 9.3):

Φtan ⊆ ConeA Φcur. We deduce this from the stronger statement ΦKL
tan ⊆ ConeA ΦKL

cur.

This result relies on properties of ΦKL
tan studied in [GK22], the characterization of ΦKL

cur

by Carrell-Peterson [Car94], and Corollary 5.5.

Observe that ΦKL
cur ⊆ ΦKL

tan ⊆ I(x−1), where the second inclusion follows from Corol-

lary 8.4(iii). Also,

ΦKL
cur = I(x−1)x≥w, (9.1)

as follows from Proposition 8.3(ii) and the equality xi = sγix.

Proposition 9.1. We have ΦKL
tan ⊆ ConeZ(I(x−1)z≥w).

Proof. We first give definitions of three terms which appear in equation (9.2) below.

Recall that s = (s1, . . . , sl) is a fixed reduced expression for x. Define Tw,s to be the set

of sequences t = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ l, such that Hsi1
· · ·Hsim = Hw. For

such t, define e(t) = m− `(w). For ζ ∈ ConeZ{γi : i /∈ t}, define nζ to be the number

of ways to express ζ as a nonnegative integer linear combination of the γi, i /∈ t.

Let B and C be the coordinate rings of the tangent space and scheme-theoretic

tangent cone respectively of Y w
x at x, and let B1 and C1 be the degree one components

of these rings. By equation (5.2) of [GK22] (see also [GK22, Theorem 6.1]) and the

simplifications following this equation, the character of C for the T -action is

CharC =
∑

t∈Tw,s

∑
ζ∈ConeZ{γi:i/∈t}

(−1)e(t)nζe
−ζ . (9.2)
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For each γi in this summation, i /∈ t for some t ∈ Tw,s; by [GK22, Theorem 5.8], zi ≥ w.

Therefore all weights ζ of C lie in −ConeZ(I(x−1)z≥w). So too do all weights of B1,

since B1 and C1 are canonically identified. But B1 is the dual space of TxY
w
x . Hence

all weights of TxY
w
x lie in ConeZ(I(x−1)z≥w). �

Theorem 9.2. We have:

(i) ConeA ΦKL
tan = ConeA ΦKL

cur, or equivalently, (ΦKL
tan)A = (ΦKL

cur)
A. Hence ΦKL

tan ⊆
ConeA ΦKL

cur.

(ii) ΦKL
tan ∩ I(x−1)A = ΦKL

cur ∩ I(x−1)A.

(iii) ΦKL
tan ∩ I(x−1)A = ΦKL

cur ∩ I(x−1)A = (ΦKL
cur)

A = (ΦKL
tan)A, if Φ is of classical type

or of type G2.

Proof. (i) For S = I(x−1),

ΦKL
tan ⊆ ConeZ(Sz≥w) ⊆ ConeA(Sz≥w) = ConeA(Sx≥w) = ConeA ΦKL

cur,

where the inclusions and equalities are due, respectively, to Proposition 9.1, Z ⊆ A,

Corollary 5.5, and equation (9.1). It follows that ConeA ΦKL
tan ⊆ ConeA ΦKL

cur, and the

other inclusion is clear. The equivalence of the second equality of (i) is due to Corollary

3.11. Note that in general, we need to take A = Q to apply Corollary 5.5. However, if

G is simply laced, Corollary 5.5 holds for A = Z as well, so we can take either A = Q
or A = Z.

(ii) follows from (i) and Lemma 2.2(iii).

(iii) The first and third equalities are (ii) and (i) respectively, and the second equality

follows from Corollary 6.7 and equation (9.1). �

We can deduce from Theorem 9.2 analogous results for Schubert varieties.

Corollary 9.3. We have:

(i) ConeA Φtan = ConeA Φcur, or equivalently, (Φtan)A = (Φcur)
A. Hence Φtan ⊆

ConeA Φcur.

(ii) Φtan ∩ (xΦ−P )A = Φcur ∩ (xΦ−P )A.

(iii) Φtan ∩ x∆− = Φcur ∩ x∆−, if Xw ⊆ G/B.

Proof. (i) follows from Theorem 9.2(i) and Corollary 8.4(ii), (iv).

(ii) follows from (i) and Lemma 2.2(iii).

(iii) follows from (ii) and Corollary 6.10. �

If we restrict attention to Schubert varieties in G/B and x = w0, the longest element

of the Weyl group, some of our results simplify. In this case, since P = B, Φ−P = Φ−

and xΦ−P = w0Φ− = Φ+. Thus, by Corollary 9.3(i) and Proposition 8.3(i), Φtan ⊆
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ConeA Φcur = ConeA{α ∈ Φ+ | sαw0 ≥ w}. Moreover, sαw0 ≥ w is equivalent to

sα ≤ ww0 (see [Hum90, Example 5.9.3]). Hence we obtain

Φtan ⊆ ConeA{α ∈ Φ+ | sα ≤ ww0}.

The following proposition gives a stronger result for classical types and type G2.

Proposition 9.4. Suppose Φ is of classical type or of type G2, P = B, and x = w0.

Then (Φcur)
A = {α ∈ ∆ | sα ≤ ww0}, and thus

Φtan ⊆ ConeA{α ∈ ∆ | sα ≤ ww0}. (9.3)

Proof. Since x = w0, S = I(x−1) = Φ+. By Proposition 6.9, SA = ∆. We have

(Sx≥w)A = (SA)x≥w = {α ∈ ∆ | sαw0 ≥ w},

where the first equality is by Corollary 6.7, and the second is because SA = ∆. By

(9.1), Sx≥w = ΦKL
cur. Since x = w0, by Corollary 8.4(iv), ΦKL

cur = Φcur. We conclude that

(Φcur)
A = {α ∈ ∆ | sαw0 ≥ w}.

Since sαw0 ≥ w ⇔ sα ≤ ww0, and Φtan ⊆ ConeA((Φcur)
A) (see Corollary 3.10), the

result follows. �

We remark that the condition sα ≤ ww0 appearing in Proposition 9.4 is equivalent

to the condition that the simple reflection sα occurs in a reduced expression for ww0.

Remark 9.5. In Corollary 9.3, we proved that Φ(TxX
w) ⊆ ConeQ Φ(TExX

w). We

sketch an alternative proof of this result provided by the referee (who attributed it to

”folklore”), and we thank the referee for the same. To our knowledge, the stronger result

for simply laced types, namely that Φ(TxX
w) ⊆ ConeZ Φ(TExX

w), is not recovered by

this proof.

Since Φ(TxX
w) is contained in an open half-space, x is said to be an attractive

fixed point of Xw (see [Bri99, 1.3]). Hence there exists an open affine T -invariant

neighborhood Ux of x in Xw together with a T -equivariant closed embedding ι : Ux →
TxX

w (see [ByB73, Corollary 2] or [Bri99, Proposition A2]). If p : TxX
w → TExX

w

is the natural T -equivariant projection, then the T -equivariant map π = p ◦ ι : Ux →
TExX

w is known to be finite (see proof of [Bri98, Theorem 17]).

We shall denote the coordinate ring of an affine scheme V by k[V ], where k is the

ground field. For λ ∈ Φ(TxX
w), there exists xλ ∈ k[TxX

w] with weight −λ. Let

y = ι∗(xλ) ∈ k[Ux], where ι∗ is the map on coordinate rings induced by ι. Then y

also has weight −λ. Since π is finite, y is integral over k[TExX
w]. Thus there exist

a0, . . . , am ∈ k[TExX
w] such that

ym + am−1y
m−1 + · · ·+ a1y + a0 = 0. (9.4)

The coordinate ring k[TExX
w] is equal to the polynomial ring k[zµ : µ ∈ Φ(TExX)],

where zµ represents a vector in (TExX
w)∗ of weight −µ. Since the weight of ym
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is m(−λ), equation (9.4) implies that for some i < m, ai must contain a monomial

(zµ1)j1 · · · (zµt)jt such that the weight of (zµ1)j1 · · · (zµt)jtyi is also m(−λ). Thus

j1(−µ1) + · · ·+ jt(−µt) = (m− i)(−λ).

Hence λ is a nonnegative rational linear combination of elements of Φ(TExX
w). We

conclude that Φ(TxX
w) ⊆ ConeQ Φ(TExX

w), as desired. �

10. When tangent weights are curve weights

In this section, we use Theorem 9.2 and Corollary 9.3 to study cases where elements

of Φtan lie in Φcur, and thus can be easily characterized. We use this analysis to give

smoothness criteria for Xw at certain points x.

10.1. Characterizations of tangent spaces. Recall that Φtan ⊆ xΦ−P and ΦKL
tan ⊆

xΦ−P ∩ Φ+ = I(x−1).

Theorem 10.1. (cf. [GK22, Theorem A]) Let α ∈ I(x−1)A. Then α ∈ ΦKL
tan if and

only if sαx ≥ w.

Proof. For α ∈ I(x−1)A, Theorem 9.2(ii) implies that α ∈ ΦKL
tan if and only if α ∈ ΦKL

cur.

This occurs if and only if sαx ≥ w by Proposition 8.3(ii), �

Corollary 10.2. Let α ∈ xΦ−P .

(i) If sαx > x, then α ∈ Φtan.

(ii) If sαx < x, then α ∈ I(x−1). In this case, if α ∈ I(x−1)A, then α ∈ Φtan if

and only if sαx ≥ w.

Proof. (i) If sαx > x, then α ∈ xΦ−P ∩ Φ− by Corollary 8.2, so α ∈ Φtan by Corollary

8.4(ii). Note that xΦ−P ∩ Φ− is the set of weights of Xx
0 = B− · xP (cf. (8.2) and the

comment after this equation).

(ii) If sαx < x, then α ∈ I(x−1) by Corollary 8.2, and thus, by Corollary 8.4(iii),

α ∈ Φtan if and only if α ∈ ΦKL
tan. By Theorem 10.1, if α ∈ I(x−1)A, this occurs if and

only if sαx ≥ w. �

Corollary 10.3. Let Xw ⊆ G/B and let α ∈ x∆−. Then α ∈ Φtan if and only if

sαx ≥ w.

Proof. For α ∈ x∆−, Corollary 9.3(iii) implies that α ∈ Φtan if and only if α ∈ Φcur,

which by Proposition 8.3(i) is equivalent to sαx ≥ w. �

Recall from Section 7 that a root set S ⊆ Φ+ is said to be coplanar if there exists v ∈ t

such that α(v) = −1 for all α ∈ S; and that x is said to be a cominuscule Weyl group

element if I(x−1) is coplanar. If ΦKL
tan is coplanar, then x is called a KL cominuscule

point of Xw. Since ΦKL
tan ⊆ I(x−1), if x is a cominuscule Weyl group element, then x
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is a KL cominuscule point of Xw. See [GK24] or [GK21] for further discussion of KL

cominuscule points. The maximal parabolic subgroup P ⊇ B (or sometimes G/P ) is

said to be cominuscule if the simple root corresponding to P occurs with coefficient 1

when the highest root of G is written as a linear combination of the simple roots.

Theorem 10.4. Suppose that Φ is simply laced and that any of the following hold:

(i) All elements of ΦKL
tan are integrally indecomposable in ΦKL

tan.

(ii) All elements of I(x−1) are integrally indecomposable in I(x−1).

(iii) x is fully commutative and Φ is of types A or D.

(iv) x is a KL cominuscule point of Xw.

(v) x is a cominuscule Weyl group element.

(vi) P is cominuscule.

Then ΦKL
tan = ΦKL

cur and Φtan = Φcur. If α ∈ xΦ−P , then α ∈ ΦKL
tan if and only if

x > sαx ≥ w, and α ∈ Φtan if and only if sαx ≥ w.

Proof. (iii) ⇒ (ii) ⇒ (i) by Corollary 7.4 and Lemma 2.2(v) respectively; (vi) ⇒ (v)

⇒ (iv) ⇒ (i) by [GK22, Proposition 6.7], definition, and Theorem 7.2 respectively.

Thus we may assume that (i) holds, i.e., (ΦKL
tan)Z = ΦKL

tan. By Lemma 2.2(v), (ΦKL
cur)

Z =

ΦKL
cur. Hence Theorem 9.2(i) implies ΦKL

tan = ΦKL
cur. From Corollary 8.4(ii) and (iv) it

follows that Φtan = Φcur. Let α ∈ xΦ−P . By Corollary 8.4(v), α ∈ ΦKL
tan = ΦKL

cur ⇔ x >

sαx ≥ w. By Proposition 8.3(i), α ∈ Φtan = Φcur ⇔ sαx ≥ w. �

The decomposition (8.2) implies that x is a smooth point of Xw if and only if x is a

smooth point of Y w
x . Theorem 10.4 yields the following smoothness criterion.

Corollary 10.5. Suppose that Φ is simply laced. If any of the conditions of Theorem

10.4 are satisfied, then the following are equivalent:

(i) x is a smooth point of Xw and Y w
x .

(ii) |{α ∈ xΦ−P : sαx ≥ w}| = dimXw.

(iii) |{α ∈ I(x−1) : sαx ≥ w}| = dimY w
x .

Proof. If any of the conditions of Theorem 10.4 is satisfied, then

|Φtan| = |Φcur| = |{α ∈ xΦ−P : sαx ≥ w}|.

Thus, (ii) holds if and only if |Φtan| = dimXw, which by definition is equivalent to

smoothness of Xw at x. Hence (i) ⇔ (ii). The equivalence of (i) and (iii) is proved

similarly. �

10.2. Smoothness and reduced expressions. Recall that s = (s1, . . . , sl) is a re-

duced expression for x. Since w ≤ x, s contains a reduced subexpression for w. Let

M = {i ∈ [l] : (s1, . . . , ŝi, . . . , sl) contains a reduced subexpression for w}.
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Lemma 10.6. |M | = `(x)− `(w) if and only if s contains a unique reduced subexpres-

sion for w.

Proof. Let 1 ≤ i1 < · · · < it ≤ l be such that (s1, . . . , ŝi1 , . . . , ŝit , . . . , sl) is a re-

duced expression for w. If it is the unique reduced subexpression of s for w, then

M = {i1, . . . , it}, and |M | = l − `(w) = `(x) − `(w). If there exists another reduced

subexpression of s for w, then M ) {i1, . . . , it}, and |M | > `(x)− `(w). �

Theorem 10.7. Suppose that Φ is simply laced. If any of the conditions (ii), (iii),

(v), or (vi) of Theorem 10.4 are satisfied, then x is a smooth point of Xw if and only

if s contains a unique reduced subexpression for w.

Proof. First, we claim that since Φ is simply laced, x is a smooth point of Xw if and

only if

|{i ∈ [l] : xi ≥ w}| = `(x)− `(w). (10.1)

Indeed, for any α ∈ I(x−1), α = γi for some i ∈ [l], and sαx = xi. Hence the left side of

(10.1) equals |{α ∈ I(x−1) : sαx ≥ w}|. The right side of (10.1) equals dimY w
x . Hence

the claim follows from Corollary 10.5.

Conditions (iii), (v), and (vi) of Theorem 10.4 all imply condition (ii) of the same

theorem; hence we may assume that I(x−1)Z = I(x−1). By Theorem 7.2, I(x−1)‡ =

I(x−1); hence xi = zi for all i. Consequently,

{i ∈ [l] : xi ≥ w} = {i ∈ [l] : zi ≥ w}.

By Lemma 4.2, zi ≥ w if and only if (s1, . . . , ŝi, . . . , sl) contains a reduced subex-

pression for w. Therefore {i ∈ [l] : zi ≥ w} = M . Therefore, x is a smooth point of Xw

if and only if |M | = `(x)− `(w). The result now follows from Lemma 10.6. �

For P cominuscule, the smoothness criterion of Theorem 10.7 applies even when Φ is

not simply laced. This can be deduced from [GK15, Corollary 2.11], which states that

the multiplicity of x ∈ Xw when P is cominuscule is equal to the number of reduced

subexpressions of s for w. Of course, x is a smooth point of Xw precisely when its

multiplicity equals 1. Thus the result is obtained.

Further discussion of the smoothness criterion of Theorem 10.7 appears in [GK24].

11. Examples

In this section we consider examples. In Section 11.1, we determine the tangent

space at w0 to singular 3-dimensional Schubert varieties for an irreducible root system

not of type G2. Section 11.2 focuses on type D. We define a family of elements

wab ∈ W , for 1 ≤ a < b < n − 1, and let Φtan and Φcur be defined taking x = w0 and

w = wab. We show that Φtan properly contains Φcur, and verify by direct calculation

that ConeA Φcur ⊇ Φtan, as guaranteed by our main result Theorem 1.1.
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Throughout this section, we take P = B so WP = W . In this section, Φtan and Φcur

always refer to the sets of curve and tangent weights at the point x = w0.

11.1. Three-dimensional Schubert varieties. Schubert varieties of dimension 3 are

of the form Xw, where either:

(1) w = w0sαsβsα for nonorthogonal simple roots α, β.

(2) w = w0sαsβsγ , where α, β, γ are distinct simple roots.

For w as in (1), it is shown in [Bri98] that if 〈β, α∨〉 ≤ −2, then Xw is rationally

smooth but not smooth at w0. Using equivariant multiplicities, one can show that for

w as in type (2) that Xw is smooth at w0. The equivariant multiplicity at w0 can be

calculated using a formula for equivariant multiplicities due to Arabia and Rossmann

([Ara89, Prop. 3.3.1] and [Ros89]; see [Bri98, Section 4]); then a result from [Kum96]

(see [Bri98, Cor. 19]) may be applied to deduce smoothness.

In light of this discussion, the following proposition describes the tangent space at

w0 to a singular 3-dimensional Schubert variety for an irreducible root system Φ not

of type G2.

Proposition 11.1. Assume Φ is irreducible. Suppose α and β are simple roots with

〈β, α∨〉 = −2. Let Φtan and Φcur correspond to w = w0sαsβsα and x = w0. Then

Φcur = {α, β, 2α+ β} and Φtan = {α, β, α+ β, 2α+ β}.

Proof. Since there are two root lengths in Φ, the action of w0 on Φ is by multiplication

by −1 (cf. [Hum72, Sec. 13, Ex. 5]), so w0 is in the center of W .

Taking x = w0, we have Φcur = {γ ∈ Φ+ | sγw0 ≥ w}. Equivalently, Φcur = {γ ∈
Φ+ | sγ ≤ sαsβsα}. (The statements are equivalent because sγw0 ≥ w is equivalent

to w0sγw0 ≤ w0w; since w0 is in the center of W , this is equivalent to sγ ≤ sαsβsα.)

Since the length of sγ is odd, the only possibilities for sγ are sα, sβ, or sαsβsα = ssαβ.

We conclude that Φcur = {α, β, sαβ} = {α, β, 2α+ β}.
We have

Φcur ( Φtan ⊆ ConeA Φcur. (11.1)

The first inclusion is proper because Xw is singular at w0, so dimTw0X
w > dimXw =

3 = |Φcur|. The second inclusion follows from our main result. In this example, α and

β span a root system of type B2, with long root β. Thus, there are 4 roots in the cone

spanned (over Q or Z) by α, β, namely, α, β, sαβ = 2α+β, sβα = α+β, the first three

of which are in Φcur. From (11.1), we conclude that Φtan must consist of all 4 of these

roots. �

Note that for Φ of type G2 (which occurs exactly when 〈β, α∨〉 = −3), there are

more than 4 positive roots, so the arguments above do not suffice to determine Φtan.
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11.2. Examples in type Dn. In this section we assume Φ is of type Dn. We define

a family of elements wab (a < b < n− 1), and consider the tangent spaces Tw0X
wab at

x = w0. We write Φoth = Φtan \ Φcur for the set of “other” roots in the tangent space

of Xwab at w0. (Of course, Φtan,Φcur, and Φoth all depend on the choice of x = w0 and

of wab ∈ W , but we omit this from the notation.) We will calculate Φoth, and identify

enough elements of Φcur to show that each root in Φoth is a sum of two roots in Φcur.

Thus, in this example, we can verify our main result that Φtan ⊆ ConeA Φcur by direct

calculation.

We have chosen x = w0 in this section because the description of the tangent spaces

Tx(Xw) in [Lak00a] and [BL00] is much simpler for x = w0 than for arbitrary x.

We use the standard realization of the root system of Dn as in Section 6. Let w ∈W .

We have Φcur = {γ ∈ Φ+ | sγw0 ≥ w}. Applying [Lak00a, Theorem 6.8] or [BL00,

Theorem 5.3.1], we see that γ ∈ Φoth if and only if γ = εi + εj , with 1 ≤ i < j < n− 1,

and

(1) sγw0 6≥ w, and

(2) sεi−εnsεi+εnsεj+εn−1w0 ≥ w.

(In translating the result from [Lak00a] we have used the fact that w0 commutes with

sεi−εnsεi+εnsεj+εn−1 , as can easily be seen by writing the elements of W as signed

permutations (cf. [BG03].)

Motivated by condition (2), for 1 ≤ a < b < n−1, we define uab = sεa−εnsεa+εnsεb+εn−1 ,

and set wab = uabw0. If w = wab, then we claim that (1) and (2) are equivalent to the

conditions:

(1′) sγ 6≤ uab, and

(2′) uij < uab.

Indeed, condition (1) states that sγw0 6≥ wab = uabw0, which is equivalent to (1′).

Condition (2) states that uijw0 ≥ wab = uabw0, which is equivalent to (2′). This verifies

the claim.

Proposition 11.2. Suppose Φ is of type Dn for n ≥ 4. Fix a, b satisfying 1 ≤ a <

b < n− 1. Let Φtan, Φcur, and Φoth be defined as above, corresponding to x = w0 and

w = wab. Assume below that i, j denote integers satisfying 1 ≤ i < j < n− 1. Then:

(a) Φoth = {εi + εj | i ≥ a, j ≥ b}.
(b) Suppose i ≥ a and j ≥ b. Then the roots εi ± εn−1 and εj ± εn−1 are in Φcur.

(c) Φtan ⊆ ConeA Φcur.

Proof. We sketch the proof, but omit most details, which involve calculations in the

Bruhat order in type Dn. We adopt the conventions and notation of [BG03]. The Weyl

group of type Dn can be realized as the group of signed permutations of 1, . . . , n, with

an even number of negative signs. If u ∈W , write u(i) = ui; then u can be represented
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by the sequence u1u2 . . . un. Here ui ∈ {1, 1, 2, 2, . . . , n, n}, where a denotes −a. Write

γ = εi + εj .

The proof uses two key facts about the Bruhat order. The first is the fact that

if u ∈ W and β is a positive root with uβ > 0, then u < usβ. The second is a

characterization of the Bruhat order in type Dn in terms of the sequences representing

elements of W as signed permutations. This characterization is due to Proctor [Pro82];

the statement may also be found in [BG03, Prop. 2.10].

We first consider (a). We know that γ ∈ Φoth if and only if conditions (1′) and (2′)

are satisfied. We claim first that (2′) is satisfied ⇔ a ≤ i and b ≤ j. The implication

(⇒) is proved by considering the contrapositive. If either of i ≥ a or j ≥ b is false, then

applying Proctor’s condition to the signed permutations corresponding uij and uab,

we see that uij 6≤ uab. The calculation is made easier because the parity condition in

this characterization is not needed, and one can restrict attention to the places where

the expressions for uij and uab differ from the identity permutation 12 . . . n (cf. [BG03,

Lemma 3.4]). To prove (⇐), we suppose i ≥ a and j ≥ b. In this case, we can exhibit

a sequence of positive roots β1, . . . , βr such that

uij < uijsβ1 < · · · < uijsβ1sβ2 · · · sβr = uab. (11.2)

This calculation is facilitated by considering elements of W as signed permutations and

using the description of multiplication by reflections in [BG03, (2.1)]. We omit further

details. This proves the claim.

To complete the proof of (a), we need to verify that if γ = εi + εj , with a ≤ i and

b ≤ j, then sγ 6≤ uab. This can be verified by writing down the expressions for sγ and

uab as signed permutations, and again using Proctor’s characterization of the Bruhat

order. We omit further details. This completes the proof of (a).

We next consider (b). We know a root ζ is in Φcur if and only if sζw0 ≥ wab = uabw0,

or equivalently, sζ < uab. Thus, we want to show that if ζ is one of the four roots listed in

the statement of (b), then sζ < uab. Since sεj−εn−1 < sεi−εn−1 and sεj+εn−1 < sεi+εn−1 ,

we only need to prove this for ζ equal to εi−εn−1 or εi+εn−1. We prove that sζ < uab in

the same way the statement uij ≤ uab was proved in part (a), by exhibiting sequences

analogous to (11.2). We omit further details.

Finally, part (c) follows from parts (a) and (b). Indeed, since

εi + εj = (εi − εn−1) + (εj + εn−1) = (εi + εn−1) + (εj − εn−1),

parts (a) and (b) imply that every root in Φoth is in ConeA Φcur. �

References

[Ara89] Alberto Arabia, Cohomologie T -équivariante de la variété de drapeaux d’un groupe de Kac-
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