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Abstract. Tangent spaces to Schubert varieties of type A were characterized by
Lakshmibai and Seshadri [LS84]. This result was extended to the other classical types
by Lakshmibai [Lak95], [Lak00b], and [Lak00a]. We give a uniform characterization
of tangent spaces to Schubert varieties in cominuscule G/P . Our results extend
beyond cominuscule G/P ; they describe the tangent space to any Schubert variety
in G/B at a point xB, where x is a cominuscule Weyl group element in the sense
of Peterson. Our results also give partial information about the tangent space to
any Schubert variety at any point. Our method is to describe the tangent spaces
of Kazhdan-Lusztig varieties, and then recover results for Schubert varieties. Our
proof uses a relationship between weights of the tangent space of a variety with torus
action, and factors of the class of the variety in torus equivariant K-theory. The
proof relies on a formula for Schubert classes in equivariant K-theory due to Graham
[Gra02] and Willems [Wil06], as well as a theorem on subword complexes due to
Knutson and Miller [KM04], [KM05].
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1. Introduction

One goal in the study of Schubert varieties is to understand their singularities. A

related goal is to understand their Zariski tangent spaces, or equivalently, the weights

of their Zariski tangent spaces at fixed points of the action of a maximal torus. A

description of these tangent spaces in type A was given by Lakshmibai and Seshadri

[LS84]. In [Lak95], [Lak00b], and [Lak00a], Lakshmibai extended this result to all

classical types (see also [BL00, Chapter 5]). We give a different description of tangent

spaces to Schubert varieties, which is uniform across all types. Our description, how-

ever, recovers only part of the tangent space, except in certain cases, such as Schubert

varieties in cominuscule G/P , in which it recovers the entire tangent space. Our results

hold for an algebraically closed ground field k of characteristic 0. The results of [LS84],

[Lak95], [Lak00b], and [Lak00a] hold in arbitrary characteristic.

Rather than studying Schubert varieties directly, we focus on the smaller Kazhdan-

Lusztig varieties, which differ locally only by a well-prescribed affine space. We study

general Kazhdan-Lusztig varieties, but we do not attempt to recover all weights of

the tangent space. Rather, we restrict our attention to those weights of the tangent

space which are integrally indecomposable in an ambient space V , which is to say that

they cannot be written as the sum of other weights of V . We characterize such weights.

When all weights of V are integrally indecomposable in V , our characterization captures

all weights of the tangent space. This occurs, for example, for Kazhdan-Lusztig varieties

in cominuscule G/P , or more generally, for any Kazhdan-Lusztig variety at a T -fixed

point (i.e., point of tangency) which is a cominuscule Weyl group element.

1.1. Statement of results. Let G be a semisimple algebraic group defined over an

algebraically closed field k of characteristic 0. Let P ⊇ B ⊇ T be a parabolic subgroup,

Borel subgroup, and maximal torus of G respectively. We denote the set of weights of

a representation E of T by Φ(E). Let W be the Weyl group of (G,T ), and S the set

of simple reflections in W relative to B.

Fix w ≤ x ∈ W . Let Xw be the Schubert variety B−wB, and Y w
x the Kazhdan-

Lusztig variety BxB ∩ B−wB, in G/B. The Kazhdan-Lusztig variety Y w
x (and thus

its tangent space at x, TxY
w
x ) is an affine subvariety of an ambient space V in G/B

with weights Φ(V ) = I(x−1), the inversion set of x−1. If s = (s1, . . . , sl), si ∈ S, is

a reduced expression for x, then the elements of I(x−1) are given explicitly by the

formula γi = s1 · · · si−1(αi), i = 1, . . . , l, where αi is the simple root corresponding to

si.

Our main result is the following theorem (see Theorem 5.8):

Theorem A. Suppose γj is integrally indecomposable in I(x−1). Then the following

are equivalent:

(i) γj ∈ Φ(TxY
w
x ).
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(ii) There exists a reduced subexpression of (s1, . . . , ŝj , . . . , sl) for w.

(iii) The Demazure product of (s1, . . . , ŝj , . . . , sl) is greater than or equal to w.

This theorem, which applies to Kazhdan-Lusztig varieties in G/B, extends to Schu-

bert varieties and to G/P . Moreover, when x is a cominuscule Weyl group element of

W , all γj are integrally indecomposable in I(x−1), so Theorem A recovers all weights

of the tangent space.

Remark 1.1. If γj is not integrally indecomposable in I(x−1), then (ii) and (iii) of

Theorem A are still equivalent, but (i) is no longer equivalent to (ii) and (iii) in general.

Remark 1.2. Let us denote by TExY
w
x the span of the tangent lines to T -invariant

curves through x in Y w
x ; then TExY

w
x ⊆ TxY

w
x . It is known that condition (iii) of

Theorem A, with the Demazure product of (s1, . . . , ŝj , . . . , sl) replaced by the ordinary

product s1 · · · ŝj · · · sl, gives a characterization of all weights of TExY
w
x (and not just the

integrally indecomposable weights) [Car95] [CK03]. Thus, Theorem A can be viewed

as a characterization of the integrally indecomposable weights of TxY
w
x which is similar

to this known characterization of all weights of the smaller space TExY
w
x .

Remark 1.3. The paper [GK21] proves that in simply-laced types, the Demazure

product of (s1, . . . , ŝj , . . . , sl) of Theorem A (iii) is equal to the ordinary product

s1 · · · ŝj · · · sl, provided that γj is integrally indecomposable in I(x−1). As a corollary,

it is proved that in simply-laced types, when x is a cominuscule Weyl group element,

Φ(TxX
w) = Φ(TExX

w).

1.2. Outline of proof. Our proof of Theorem A uses equivariant K-theory. Let us fix

notation and give some basic definitions and properties. If T acts on a smooth scheme

M , the Grothendieck group of T -equivariant coherent sheaves (or vector bundles) on M

is denoted by KT (M). If N is a T -stable subscheme of M , then the class in KT (M) of

the pushfoward of the structure sheaf ON of N is denoted by [ON ]M , or sometimes just

[ON ]. A T -equivariant vector bundle on a point is a representation of T , so KT ({point})
can be identified with R(T ), the representation ring of T . The inclusion im : {m} →M

of a T -fixed point induces a pullback i∗m : KT (M)→ KT ({m}) = R(T ).

Consider for the moment a more general situation than that of the previous sub-

section: V a representation of T such that all weights of V lie in an open half-space

and have multiplicity one, Y ⊆ V a T -stable subscheme, and x ∈ Y a T -fixed point.

The structure sheaf OY defines a class [OY ] ∈ KT (V ). We show that the factors of

i∗x[OY ] ∈ R(T ) contain information about the tangent space TxY . Let us say that

1 − e−θ is a simple factor of i∗x[OY ] if i∗x[OY ] = (1 − e−θ)Q for some Q ∈ R(T ) which

is a polynomial in e−λ, λ ∈ Φ(V ) \ {θ}. We prove (see Proposition 3.5)

Proposition B. Suppose θ is integrally indecomposable in Φ(V ). Then θ ∈ Φ(TxY ) if

and only if 1− e−θ is not a simple factor of i∗x[OY ].
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Now set V and x as in Subsection 1.1 and set Y to be the Kazhdan-Lusztig variety

Y w
x . For θ ∈ Φ(V ) = I(x−1), we have θ = γj for some j. Proposition B then becomes

Proposition C. Suppose γj is integrally indecomposable in I(x−1). Then γj ∈ Φ(TxY
w
x )

if and only if 1− e−γj is not a simple factor of i∗x[OY wx ].

This characterization of Φ(TxY
w
x ) would appear to suffer from a computational dif-

ficulty: determining whether 1 − e−γj is a factor of i∗x[OY wx ], let alone whether it is

a simple factor, seems to be a nontrivial problem. It requires some sort of division

algorithm in R(T ). One approach would be to search for an expression for i∗x[OY wx ] as

a sum of terms in which 1 − e−γj appears explicitly as a factor of each summand. To

rule out the possibility that 1 − e−γj is a factor of i∗x[OY wx ], then, one would need to

show that no such expression exists. This would presumably require knowledge of all

possible expressions for i∗x[OY wx ].

We show a way around this apparent computational difficulty. When γj is integrally

indecomposable in I(x−1), the question of whether or not 1 − e−γj is a simple factor

of i∗x[OY wx ] can be answered by using a single expression for i∗x[OY wx ] due to Graham

[Gra02] and Willems [Wil06]:

i∗x[OY wx ] =
∑

t∈Tw,s

(−1)e(t)
∏
i∈t

(1− e−γi) ∈ R(T ), (1.1)

where Tw,s is the set of sequences t = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ l, such that

Hsi1
· · ·Hsim = Hw in the 0-Hecke algebra, and e(t) = m − `(w). More precisely, we

prove (see Theorem 5.6):

Theorem D. Suppose γj is integrally indecomposable in I(x−1). Then 1 − e−γj is a

simple factor of i∗x[OY wx ] if and only if 1 − e−γj occurs explicitly as a factor of every

summand of
∑

t∈Tw,s(−1)e(t)
∏
i∈t(1 − e−γi), i.e., if and only if j belongs to every

t ∈ Tw,s.

We note that one direction of this theorem follows immediately from (1.1). Combin-

ing Proposition C and Theorem D yields

Theorem E. Suppose that γj is integrally indecomposable in I(x−1). Then γj ∈
Φ(TxY

w
x ) if and only if j does not belong to every t ∈ Tw,s.

Now the equivalence of (i) and (ii) of Theorem A is essentially a reformulation of

Theorem E, using some properties of 0-Hecke algebras. The equivalence of (ii) and (iii)

is due to Knutson-Miller [KM04, Lemma 3.4 (1)].

The paper is organized as follows. In Section 2, we recall definitions and properties

of equivariant K-theory and weights of tangent spaces to schemes with T -actions. In

Section 3 we prove Proposition B. In Section 4, we give a corollary to a theorem by

Knutson-Miller on subword complexes [KM04], [KM05]. Our proof of Theorem D
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relies on this corollary. In Section 5, we apply the material of the previous sections

to Kazhdan-Lusztig varieties in order to prove Proposition C and Theorems D and

E. In Section 6, we show how to extend these results to G/P and discuss the case of

cominuscule Weyl group elements and cominuscule G/P .

The related paper [GK21] examines rationally indecomposable weights of the am-

bient space V . Rational indecomposability is a stricter condition than integral inde-

composability, so the set of rationally indecomposable weights is contained in the set

of integrally indecomposable weights. For this smaller set of weights, [GK21] obtains

stronger results. For example, it is shown that the elements of Φ(TxY
w
x ) which are

rationally indecomposable in I(x−1) lie in Φ(TExY
w
x ). Several results of [GK21] rely

on those of this paper.

2. Preliminaries

Let k be an algebraically closed field of characteristic 0. We work in the category of

schemes over k. A point on a scheme will always refer to a closed point. If W is a finite

dimensional vector space over k, then one can give a bijection between the vectors of W

and the (closed) points of the affine scheme Spec(Sym(W ∗)) [GW10, Corollary 1.11].

As is customary, we will often identify W with this scheme, and in this context refer

to Sym(W ∗) as the coordinate ring of W .

In this section, we collect information concerning equivariant K-theory, tangent

spaces, and tangent cones. We include proofs for the convenience of the reader.

2.1. The pullback to a fixed point in T -equivariant K-theory. Let T = (k∗)n

be a torus, and let T̂ = Hom(T, k∗) be the character group of T . The mapping λ 7→ dλ

from a character to its differential at 1 ∈ T embeds T̂ in the dual t∗ of the Lie algebra

of T . We will usually view T̂ as a subset of t∗ under this embedding and express the

group operation additively. If λ denotes an element of T̂ viewed as an element of t∗,

then the corresponding homomorphism T → k∗ is written as eλ. The representation

ring R(T ) is defined to be the free Z-module with basis eλ, λ ∈ T̂ , with multiplication

given by eλeµ = eλ+µ.

Let V be a finite dimensional representation of T such that all weights of V have

multiplicity one and lie in an open half-space in the real span of the characters of

T . Denote the set of weights of T on V by Φ(V ) and the set of nonnegative integer

linear combinations of elements of Φ(V ) in t∗ by ConeZ Φ(V ). The dual representation

V ∗ has weights −Φ(V ), and the coordinate ring k[V ] = Sym(V ∗) of V has weights

−ConeZ Φ(V ). Denote
∏
λ∈Φ(V )(1− e−λ) by λ−1(V ∗). For ΦA ⊆ Φ(V ), let Z[e−λ, λ ∈

ΦA] denote the subring of R(T ) generated over Z by e−λ, λ ∈ ΦA.

Lemma 2.1. If ν ∈ ConeZ Φ(V ), then e−ν can be expressed as a monomial in e−λ,

λ ∈ Φ(V ).
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Proof. Write ν = c1λ1 + · · · + ctλt, where λi ∈ Φ(V ) and ci are nonnegative integers.

Then e−ν = e
∑
−ciλi =

∏
(e−λi)ci . �

The map i∗0 : KT (V )→ R(T ) is an isomorphism, which we denote by i∗V .

Lemma 2.2. Let Y be a T -stable closed subscheme of V . Then i∗V [OY ]V ∈ Z[e−λ, λ ∈
Φ(V )].

Proof. We adapt a method appearing in [Ros89]. Denote k[V ] by R. All modules in

this proof will be T -stable R-modules, and all maps T -equivariant R-homomorphisms.

Consider the projection

R→ k[Y ]→ 0 (2.1)

The kernel is a T -stable ideal I of R which is generated by a finite number of weight

vectors r1,1, . . . , r1,n1 . Let ν1,j be the weight of r1,j ; kν1,j the T -representation of weight

ν1,j ; and F1 = ⊕n1
j=0R⊗ kν1,j . Note that R acts on the first factor of F1 and T on both,

and that Φ(F1) ⊆ Φ(R). There exists a map f1 : F1 → R such that

F1 → R→ k[Y ]→ 0 (2.2)

is exact (f1 maps 1⊗ 1 from the j-th summand of F1 to r1,j).

The kernel of f1 is finitely generated over R (since F1 is finitely generated and R

is Noetherian), and thus is generated by a finite number of weight vectors. Thus the

above procedure can be repeated to produce a module F2 and map F2 → F1, which,

when appended to (2.2), yields an exact sequence. Moreover, Φ(F2) ⊆ Φ(F1) ⊆ Φ(R).

When iterated, this procedure must terminate, by the Hilbert Syzygy Theorem. The

resulting complex is a resolution of k[Y ]:

0→ Fd → · · · → F1 → R→ k[Y ]→ 0 (2.3)

where Fi = ⊕jR⊗kνi,j and Φ(Fi) ⊆ Φ(R). Thus νi,j ∈ Φ(Fi) ⊆ Φ(R) = −ConeZ Φ(V ).

The resolution (2.3) corresponds to a resolution of OY over OV :

0→ Fd → · · · → F1 → OV → OY → 0

where Fi = ⊕jOV ⊗ kνi,j . Since [OV ]V = 1, we have

i∗V [OY ]V = 1 +
∑
i,j

(−1)ieνi,j i∗V [OV ]V = 1 +
∑
i,j

(−1)ieνi,j

By Lemma 2.1, this lies in Z[e−λ, λ ∈ Φ(V )]. �

2.2. Weights of tangent and normal spaces. The coordinate ring of V is Sym(V ∗) =

k[xλ, λ ∈ Φ(V )], a polynomial ring, where xλ denotes a vector of V ∗ of weight −λ. Ob-

serve that this polynomial ring is graded by the coordinates xλ and also by the weights

of the T action. The weights of any T -stable subspace of V form a subset of Φ(V ),
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whose corresponding weight vectors span the subspace. Thus there is a bijection be-

tween the T -stable subspaces of V and the subsets of Φ(V ). The coordinate ring of a

T -stable subspace Z is Sym(Z∗) = k[xλ, λ ∈ Φ(Z)].

Let Y → V be a T -equivariant closed immersion, with T -fixed point x ∈ Y mapping

to 0 ∈ V . Let m be the maximal ideal of the local ring of Y at x. The tangent space

to Y at x, denoted TxY , is defined to be (m/m2)∗, a vector space over k. It embeds

naturally in the tangent space to V at 0, which is isomorphic to V [GW10, (6.2), (6.3)].

Let

B = Sym(m/m2), C = ⊕i≥0m
i/mi+1.

Note that the degree one components of B and C, which are denoted by B1 and C1

respectively, are both equal to m/m2. We will often identify TxY with the affine scheme

Spec(B). The tangent cone to Y at x, denoted TCxY , is defined to be Spec(C). The

projection B � C induces an inclusion TCxY ↪→ TxY .

Both TxY and TCxY are T -stable, and TCxY ↪→ TxY is T -equivariant. The coor-

dinate ring B of TxY is equal to k[xλ, λ ∈ Φ(TxY )], with character

CharB =
1∏

λ∈Φ(TxY )(1− e−λ)
=

1

λ−1((TxY )∗)
.

This lives in R̂(T ), the set of expressions of the form
∑

λ∈T̂ cλe
λ. Similarly, we have a

formula for the character of C.

Proposition 2.3. CharC =
i∗V [OTCxY ]V
λ−1(V ∗)

=
i∗TxY [OTCxY ]TxY

λ−1((TxY )∗)
.

Proof. The first equality is proved in [GK15, Proposition 2.1] and the second in [GK17,

(3.10)]. �

Proposition 2.4. [OTCxY ]V = [OY ]V in KT (V ).

Proof. See [GK17, Proposition 3.1(2)]. �

3. Factors in equivariant K-theory

We keep the notations, definitions, and assumptions of the previous section. Denote

Φ(V ),Φ(TxY ), and Φ(V/TxY ) = Φ(V ) \ Φ(TxY ) by Φamb,Φtan, and Φnor respectively.

Then Φamb = Φtan t Φnor. If P ∈ Z[e−λ, λ ∈ Φamb], then we will say that 1− e−θ is a

simple factor of P if P = (1− e−θ)Q, for Q ∈ Z[e−λ, λ ∈ Φamb \ {θ}].

Example 3.1. Suppose λ1, λ2, λ3, λ4 ∈ Φamb are distinct, and λ3 = λ1 + λ2. Consider

P = (1− e−λ1)(1− e−λ4) + (1− e−λ2)(1− e−λ4)− (1− e−λ1)(1− e−λ2)(1− e−λ4),

an element of Z[e−λ, λ ∈ Φamb]. Then P can be expressed as (1− e−(λ1+λ2))(1− e−λ4).

Thus both 1− e−(λ1+λ2) and 1− e−λ4 are simple factors of P .



8 WILLIAM GRAHAM AND VICTOR KREIMAN

Remark 3.2. In Section 5.3, we will need to distinguish between the nature of the two

factors 1− e−(λ1+λ2) and 1− e−λ4 of P in Example 3.1. While the latter factor appears

explicitly as a factor of each summand, and thus is easily identifiable as a factor of P ,

the former does not. We will refer to 1− e−λ4 as an explicit factor of the expression P .

There are usually many ways to express an element P ∈ Z[e−λ, λ ∈ Φamb]. Explicit

factors depend on the particular expression of P , while (non-explicit) factors do not.

We wish to study whether it is possible to determine whether a weight θ lies in Φnor

or Φtan based on whether or not 1− e−θ is a simple factor of i∗V [OY ]V . We begin with

the following observation:

Proposition 3.3. If θ ∈ Φnor, then 1− e−θ is a simple factor of i∗V [OY ]V .

Proof. By Propositions 2.4 and 2.3,

i∗V [OY ]V = i∗V [OTCxY ]V =
λ−1(V ∗)

λ−1((TxY )∗)
i∗TxY [OTCxY ]TxY .

Now, λ−1(V ∗)
λ−1((TxY )∗) = λ−1((V/TxY )∗) =

∏
λ∈Φnor

(1− e−λ), and 1− e−θ occurs among the

terms of this product exactly once. Moreover, since TCxY is a closed algebraic sub-

scheme of TxY , Lemma 2.2 implies i∗TxY [OTCxY ]TxY ∈ Z[e−λ, λ ∈ Φ(TxY )] ⊆ Z[e−λ, λ ∈
Φamb \ {θ}]. �

The converse of this proposition is false, as illustrated by the following example.

Example 3.4. Suppose that T acts on V = k3, and that the standard basis vectors

e1, e2, e3 are weight vectors with corresponding weights λ1, λ2, λ3 = λ1 + λ2. Letting

x1, x2, x3 ∈ V ∗ denote the dual of the standard basis, we have, for t ∈ T , txi = e−λi(t)xi,

i = 1, 2, 3. Let Y be the affine subscheme of V defined by the ideal I = (x1x2), and let

x be the origin. Then the ideal of the tangent space and tangent cone of Y at x are

{0} and (x1x2) respectively. The tangent space of Y at x is all of V , so Φtan = Φamb

and Φnor is empty. The tangent cone of Y at x is the union of the x2x3-plane and the

x1x3 plane, so its coordinate ring C has character

CharC =

(
1

1− e−λ1
+

1

1− e−λ2
− 1

)
1

1− e−(λ1+λ2)

Additionally, λ−1(V ∗) = (1− e−λ1)(1− e−λ2)(1− e−(λ1+λ2)), and thus by Proposition

2.3,

i∗V [OY ]V = i∗V [OC ]V = (1− e−λ1) + (1− e−λ2)− (1− e−λ1)(1− e−λ2)

= 1− e−(λ1+λ2)

Hence 1− e−λ3 = 1− e−(λ1+λ2) is a simple factor of i∗V [OY ]V , but λ3 lies in Φtan.

In this example, the fact that there exists λ3 in Φtan such that 1− e−λ3 is a simple

factor of i∗V [OY ]V , thus violating the converse of Proposition 3.3, appears to be related
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to the fact that λ3 can be expressed as the sum of other weights of Φamb. This suggests

that the converse of Proposition 3.3 may hold if we restrict to weights θ which cannot

be expressed as such a sum. This assertion is true, and is proved in the following

proposition. Let us say that a weight of Φamb is integrally decomposable if it can

be expressed as a positive integer linear combination of other elements of Φamb, or

integrally indecomposable otherwise.

Proposition 3.5. Let θ be an integrally indecomposable element of Φamb. Then the

following are equivalent:

(i) θ ∈ Φtan.

(ii) xθ ∈ B1.

(iii) xθ ∈ C1.

(iv) −θ is a weight of C.

(v) 1− e−θ is not a simple factor of i∗V [OY ]V .

Proof. (v) ⇒ (i) by Proposition 3.3; (i) ⇒ (ii) since B = k[xλ, λ ∈ Φtan]; (ii) ⇒ (iii)

since C1 = m/m2 = B1; and (iii) ⇒ (iv) because xθ has weight −θ.
It remains to prove (iv) ⇒ (v). We prove the contrapositive. Thus assume that

1 − e−θ is a simple factor of i∗V [OY ]V . Then i∗V [OY ]V = (1 − e−θ)Q, where Q ∈
Z[e−λ, λ ∈ Φamb \ {θ}]. By Propositions 2.3 and 2.4,

CharC =
Q∏

λ∈Φamb\{θ}(1− e
−λ)

= Q
∏

λ∈Φamb\{θ}
(1 + e−λ + e−2λ + · · · ).

Expanding, one obtains an infinite sum of terms e−ν , ν ∈ ConeZ(Φamb). None of these

terms is equal to e−θ. (This is because none of the factors in the above product for

CharC contain a term e−θ; since θ is integrally indecomposable in Φamb, the term

e−θ cannot be obtained by expanding the product.) Thus −θ is not a weight of C, as

required. �

4. Euler characteristics of subword complexes

In Section 5, we will apply the results of the previous section to Schubert varieties

and Kazhdan-Lusztig varieties. One main tool for this purpose is Corollary 4.6, whose

proof relies on a theorem by Knutson-Miller on subword complexes [KM05], [KM04].

4.1. The reduced Euler characteristic. In this subsection we give a brief review of

simplicial complexes and their Euler characteristics.

Recall that an (abstract) simplicial complex on a finite set A is a set ∆ of subsets

of A, called faces, with the property that if F ∈ ∆ and G ⊆ F then G ∈ ∆. The

dimension of a face F is #F −1, and the dimension of ∆ is the maximum dimension of

a face. A maximal face of ∆ is called a facet. Note that ∆ = ∅ and ∆ = {∅} are distinct
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simplicial complexes, called the void complex and irrelevant complex respectively. If

∆ 6= ∅, then ∅ must be a face of ∆.

The reduced Euler characteristic of ∆ is defined to be χ̃(∆) =
∑

F∈∆(−1)dimF . If

∆ 6= ∅, so that ∅ ∈ ∆, then ∅ contributes a summand of −1 to χ̃(∆). From this we see,

for example, that χ̃({∅}) = −1, but χ̃(∅) = 0.

Suppose that ∆ 6= ∅ or {∅}. Denoting the elements of A by x1, . . . , xm, the set

A can be embedded in Rm by mapping xi to the ith standard basis vector of Rm.

For any face F of ∆, let |F | be the convex hull of its vertices in Rm. The geometric

realization of ∆ is then defined to be |∆| =
⋃
F∈∆ |F |, a topological subspace of Rm.

If |∆| is homeomorphic to a topological space Y , then ∆ is called a triangulation of Y .

In this case, the reduced Euler characteristic of ∆ is equal to the topological reduced

Euler characteristic of Y . If Y is a manifold with boundary and its boundary ∂Y is

nonempty, then there exists a subcomplex of ∆ which is a triangulation of ∂Y [Mau80,

Proposition 5.4.4]. This subcomplex is called the boundary of ∆ and denoted by ∂∆.

For m ≥ 0, let Bm = {x ∈ Rm : ‖x‖ ≤ 1} and Sm = {x ∈ Rm+1 : ‖x‖ = 1}, the m-

ball and m-sphere respectively. Both can be triangulated. In the sequel, when we refer

to an m-ball or m-sphere or their notations, m ≥ 0, we will mean a triangulation of

the object. When we refer to the sphere S−1, we will mean the irrelevant complex {∅}.
With these conventions, for m ≥ 0, χ̃(Bm) = 0, χ̃(Sm−1) = (−1)m−1, ∂Bm = Sm−1,

and ∂Sm−1 = ∅. (Observe that ∂B0 is the irrelevant complex, but ∂Sm−1 is the void

complex.) For ∆ = Bm or Sm, define χ̃◦(∆) = χ̃(∆)− χ̃(∂∆).

Lemma 4.1. χ̃◦(Bm) = χ̃◦(Sm) = (−1)m, for m ≥ 0.

Proof. The proof is a calculation: χ̃◦(Bm) = 0 − (−1)m−1 = (−1)m, and χ̃◦(Sm) =

(−1)m − 0 = (−1)m. �

4.2. 0-Hecke algebras. Let G be a semisimple algebraic group, B a Borel subgroup,

B− the opposite Borel subgroup, and T = B∩B− a maximal torus. Let W = NG(T )/T ,

the Weyl group of G. Let S be the set of simple reflections of W relative to B. The

0-Hecke algebra H associated to (W,S) over a commutative ring R is the associative

R-algebra generated by Hu, u ∈ W , and subject to the following relations: H1 is the

identity element, and if u ∈ W and s ∈ S, then HuHs = Hus if `(us) > `(u) and

HuHs = Hu if `(us) < `(u). If q = (q1, . . . , ql) is any sequence of elements of S, define

the Demazure product δ(q) ∈ W by the equation Hq1 · · ·Hql = Hδ(q). Define `(q) = l

and e(q) = `(q)− `(δ(q)).

4.3. Subword Complexes. Let s = (s1, . . . , sl) be a sequence of elements of S and

w ∈ W . The subword complex ∆(s, w) is defined to be the set of subsequences r =

(si1 , . . . , sit), 1 ≤ i1 < · · · < it ≤ l, whose complementary subsequence s \ r contains a

reduced expression for w. One checks that ∆(s, w) is a simplicial complex. Subword
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complexes were introduced in [KM04], [KM05]. We will require that s contains a

reduced expression for w.

Remark 4.2. The requirement that s contains a reduced expression for w implies that

the empty sequence ∅ lies in ∆(s, w). In particular, ∆(s, w) is not the void complex. It

is possible, however, for ∆(s, w) to be the irrelevant complex. For example, this occurs

when s = (s1), w = s1.

The following theorem is [KM04, Theorem 3.7]:

Theorem 4.3. The subword complex ∆(s, w) is either a ball or sphere. A face r is in

the boundary of ∆(s, w) if and only if δ(s \ r) 6= w.

Corollary 4.4.
∑
q⊆s

δ(q)=w

(−1)e(q) = 1.

Proof. If r ⊆ s, then r ∈ ∆(s, w) if and only if s \ r contains a reduced expression for

w if and only if δ(s \ r) ≥ w [KM04, Lemma 3.4 (1)]. The dimension of face r is equal

to `(r)− 1. Thus
∑
{r⊆s,δ(s\r)≥w}(−1)`(r)−1 = χ̃(∆(s, w)). By the second statement of

Theorem 4.3,
∑
{r⊆s,δ(s\r)>w}(−1)`(r)−1 = χ̃(∂∆(s, w)). Hence∑

r⊆s
δ(s\r)=w

(−1)`(r)−1 = χ̃◦(∆(s, w)).

But since ∆(s, w) is either a ball or sphere, χ̃◦(∆(s, w)) = (−1)dim ∆(s,w), by Lemma

4.1. To compute dim ∆(s, w), observe that if r ∈ ∆(s, w) has maximal length, then

s \ r is a reduced word for w; thus `(s) − `(r) = `(w), so `(r) = `(s) − `(w). Thus

dim ∆(s, w) = `(s)− `(w)− 1. We conclude∑
r⊆s

δ(s\r)=w

(−1)l(r)−1 = (−1)`(s)−`(w)−1.

Multiplying both sides of this equation by (−1)`(s)−`(w)−1, we obtain∑
r⊆s

δ(s\r)=w

(−1)e(s\r) = 1,

since, if δ(s \ r) = w, then we have (−1)`(s)−`(w)−1(−1)`(r)−1 = (−1)`(s)−`(r)−`(w) =

(−1)`(s\r)−`(δ(s\r)) = (−1)e(s\r). Now the desired equation is obtained by re-indexing

this summation. Rather than summing over subsequences r of s, one sums over their

complementary subsequences q. �

Definition 4.5. Let w ∈W and let s = (s1, . . . , sp) be a sequence of simple reflections

in S. Define Tw,s to be the set of sequences t = (i1, . . . , im), 1 ≤ i1 < · · · < im ≤ p,

such that Hsi1
· · ·Hsim = Hw. Then `(t) = m and e(t) = `(t)− `(w).
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Corollary 4.6.
∑

t∈Tw,s(−1)e(t) = 1, if Tw,s 6= ∅.

Proof. We have ∑
t∈Tw,s

(−1)e(t) =
∑
q⊆s

δ(q)=w

(−1)e(q) = 1,

where the first equality is obtained by re-indexing and the second equality is Corollary

4.4. Note that the hypothesis Tw,s 6= ∅ assures us that s contains a reduced expression

for w, a requirement for Corollary 4.4. �

We remark that the expression
∑

t∈Tw,s(−1)e(t) appearing in Corollary 4.6 has ele-

ments in common with the expression for i∗x[OXw ]G/B given by (5.1). The similarity

between these expressions is critical to our proof of Theorem 5.6.

5. Applications to Kazhdan-Lusztig and Schubert varieties

In Section 3 we saw that the pullback i∗V [OY ]V can be used to determine whether

an integrally indecomposable weight α ∈ Φamb lies in Φnor or Φtan. Specifically, α lies

in Φnor if and only if 1− e−θ is a simple factor of i∗V [OY ]V . Computationally, however,

an algorithm which utilizes this idea would seem to present difficulties, since it is often

possible to express i∗V [OY ]V in many different ways. Determining whether 1− e−θ is a

factor of i∗V [OY ]V is nontrivial in general.

In this section we show that when Y is the Kazhdan-Lusztig variety Y w
x in an appro-

priate space V ⊆ G/B, then a particular expression Pw,s for i∗V [OY ]V due to Graham

and Willems has the property that, if we assume that θ is integrally indecomposable in

Φamb = Φ(V ), then whenever 1−e−θ is a simple factor of i∗V [OY ]V , it is a factor of Pw,s
in a trivial fashion (see Theorem 5.6). Thus the expression Pw,s allows us to detect

simple factors 1 − e−θ of i∗V [OY ]V , θ integrally indecomposable, in a computationally

simple manner.

We begin with two subsections reviewing properties of Kazhdan-Lusztig and Schu-

bert varieties in G/B.

5.1. Unipotent subgroups and affine spaces in G/B. Let G be a semisimple

algebraic group defined over a algebraically closed field k of characteristic 0, B a Borel

subgroup, B− the opposite Borel subgroup, and T = B ∩ B−, a maximal torus. Let

W = NG(T )/T , the Weyl group of G, and let S be the set of simple reflections of W

relative to B.

We consider several unipotent subgroups of G, referring the reader to [Bor91, 14.12]

for a more detailed discussion of their properties. Let U and U− be the unipotent

radicals ofB andB− respectively. Their weights, Φ(U) and Φ(U−), are by definition the

positive and negative roots Φ+ and Φ− respectively. The unipotent subgroup xU−x−1,

which we denote by U−(x), has weights xΦ−. The unipotent subgroup U−(x) ∩U has
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weights Φ(U−(x)∩U) = xΦ−∩Φ+, which equals {α ∈ Φ+ | x−1(α) < 0}, the inversion

set of x−1. Similarly, U−(x)∩U− has weights Φ(U−(x)∩U−) = xΦ−∩Φ− = {α ∈ Φ− |
x−1(α) < 0} = −{α ∈ Φ+ | x−1(α) > 0} = −(Φ+ \ I(x−1)). The unipotent subgroups

discussed in this paragraph are isomorphic to their Lie algebras [Bor91, Remark 14.4].

In particular, they are isomorphic to affine spaces, with which we often associate them.

The variety G/B is called the full flag variety. The T -fixed points of G/B are of the

form uB, u ∈ W . By Bruhat decomposition, under the mapping ζ : U−(x) → G/B,

y 7→ y · xB, the unipotent subgroup U−(x) embeds as a T -stable affine space in G/B

containing xB. We denote this affine space by Cx. The unipotent subgroup U−(x)∩U
embeds as an affine subspace, which we denote by V . We note that the weight spaces

of Cx are one dimensional and that the weights lie in an open half-space; thus the same

is true of V .

5.2. Schubert and Kazhdan-Lusztig varieties in G/B. The Schubert variety

Xw ⊆ G/B is defined to be B−wB, the Zariski closure of the B− orbit through wB.

The Kazhdan-Lusztig variety Y w
x is defined to be V ∩ Xw. As the following lemma

shows, locally, the two varieties differ only by an affine space with well-prescribed

weights.

Lemma 5.1. Let w ≤ x ∈W . Then

(i) Cx ∼= (U−(x) ∩ U−)× V .

(ii) Xw ∩ Cx ∼= (U−(x) ∩ U−)× Y w
x .

(iii) TxX
w ∼= (U−(x) ∩ U−)× TxY w

x .

(iv) Φ(TxX
w) = −(Φ+ \ I(x−1)) t Φ(TxY

w
x ).

The isomorphisms (i) - (iii) are T -equivariant isomorphisms of varieties.

Proof. (i) [GK17, (4.6)].

(ii) is an application of [GK17, Lemma 4.6], with H = (U−(x) ∩ U−), Y = (U−(x) ∩
U) · xB, and Z = Xw ∩ Cx.

(iii) follows from (ii) and the fact that the tangent space of a product is isomorphic to

the product of the tangent spaces (see [GW10, Proposition 6.9]).

(iv) We saw in Sectionn 5.1 that Φ(U−(x) ∩ U−) = −(Φ+ \ I(x−1)). Combined with

(iii), this yields the desired result. �

Lemma 5.1(iv) shows how to produce Φ(TxX
w) from Φ(TxY

w
x ). In Section 3, we saw

that information about the latter can be obtained from i∗V [OY wx ]V . The next proposition

asserts that this pullback is equal to i∗x[OXw ]G/B, for which there are known formulas,

in particular (5.1) below.

Lemma 5.2. Let w ≤ x ∈W . Then i∗V [OY wx ]V = i∗x[OXw ]G/B.
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Proof. By Lemma 5.1(i) and (ii), we can apply [GK17, Lemma 2.1] to obtain i∗V [OY wx ]V =

i∗Cx [OXw∩Cx ]Cx . Since pullbacks in equivariantK-theory are defined locally, i∗Cx [OXw∩Cx ]Cx =

i∗x[OXw ]G/B. �

5.3. Formulas for weights of the tangent space. Fix a reduced expression s =

(s1, . . . , sl) for x. The elements of the inversion set I(x−1) = Φ+ ∩ xΦ− are given

explicitly by the formula γi = s1 · · · si(αi), i = 1, . . . , l, where αi is the simple root

corresponding to si [Hum90]. The following result is due to Graham [Gra02] and

Willems [Wil06]:

Theorem 5.3. Let w ≤ x ∈W , and let s = (s1, . . . , sl) be a reduced sequence of simple

reflections for x. Then

i∗x[OXw ]G/B =
∑

t∈Tw,s

(−1)e(t)
∏
i∈t

(1− e−γi) ∈ R(T ) (5.1)

Denote the expression
∑

t∈Tw,s(−1)e(t)
∏
i∈t(1 − e−γi) by Pw,s. By Lemma 5.2, we

have

Corollary 5.4. Let w ≤ x ∈W . Then i∗V [OY wx ]V = Pw,s.

Remark 5.5. In general, there exist numerous expressions for i∗V [OY wx ]V . Lemma 2.2

assures us that there exists an expression as a polynomial in 1−e−γ , γ ∈ Φ(V ) = I(x−1);

Pw,s is such an expression.

We shall say that 1− e−γj is an explicit factor of Pw,s if 1− e−γj occurs among the

factors of every summand
∏
i∈t(1− e−γi) of Pw,s, or equivalently, if j belongs to every

t ∈ Tw,s (see Remark 3.2). Since all of the γj , j = 1, . . . , l, are distinct, every explicit

factor of Pw,s is a simple factor of i∗V [OY wx ]V . The following theorem tells us that when

γj is integrally indecomposable in I(x−1), the converse is true as well.

Theorem 5.6. Let w ≤ x ∈ W , and let γj be integrally indecomposable in I(x−1). If

1− e−γj is a simple factor of i∗V [OY wx ]V , then it is an explicit factor of Pw,s.

Proof. Let C be the coordinate ring of the tangent cone to Y w
x at x. We will assume

that 1 − e−γj is not an explicit factor of Pw,s and show that −γj is a weight of C (of

multiplicity 1). Proposition 3.5 then implies that 1 − e−γj is not a simple factor of

i∗V [OY wx ]V , completing the proof. Let [l] denote {1, . . . , l}.
By Proposition 2.3, we have

CharC =
i∗V [OY wx ]V

λ−1(V ∗)
=

∑
t∈Tw,s(−1)e(t)

∏
i∈t(1− e−γi)∏

i∈[l](1− e−γi)
(5.2)

Each summand of (5.2) can be simplified:

(−1)e(t)
∏
i∈t(1− e−γi)∏

i∈[l](1− e−γi)
= (−1)e(t)

1∏
i/∈t(1− e−γi)
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= (−1)e(t)
∏
i/∈t

(1 + e−γi + e−2γi + · · · )

= (−1)e(t)
∑

ζ∈ConeZ{γi:i/∈t}
nζe
−ζ

= (−1)e(t)nγje
−γj + other terms

where nζ is the number of ways to express ζ as a nonnegative integer linear combination

of the γi, i /∈ t, and “other terms” refers to an infinite linear combination of characters

with no e−γj term. Since γj is integrally indecomposable in I(x−1), nγj = 1 if j /∈ t

and nγj = 0 if j ∈ t. Thus

(−1)e(t)
∏
i∈t(1− e−γi)∏

i∈[l](1− e−γi)
=

{
(−1)e(t)e−γj + other terms, if j /∈ t

other terms, if j ∈ t
(5.3)

According to (5.2), CharC is the sum of fractions as in (5.3), one for each t ∈ Tw,s.
Therefore the coefficient of e−γj in CharC is

N =
∑

{t∈Tw,s:j /∈t}

(−1)e(t)

Setting sj = (s1, . . . , ŝj , . . . , sl), we have

N =
∑

t∈Tw,sj

(−1)e(t)

The assumption that 1−e−γj is not an explicit factor of Pw,s assures us that Tw,sj 6= ∅,
and thus this sum equals 1 by Corollary 4.6. Since N 6= 0, −γj is a weight of C. �

Denote Φ(TxY
w
x ) and Φ(V/TxY

w
x ) by Φtan and Φnor respectively, so Φtan t Φnor =

Φ(V ) = I(x−1).

Corollary 5.7. Let w ≤ x ∈ W , and suppose that γ is an integrally indecomposable

element of I(x−1). If γ ∈ Φnor, then 1− e−γ is an explicit factor of Pw,s.

Proof. Since γ ∈ Φnor, 1−e−γ is a simple factor of i∗V [OY wx ]V , by Proposition 3.3. Thus

1− e−γ is an explicit factor of Pw,s, by Theorem 5.6. �

Let m = `(w), and define

RTw,s = {t = (t1, . . . , tm) ⊆ [l] | st1 · · · stm = w}.
Parts (i) - (iii) of the following theorem summarize the main findings of this section

thus far. Parts (iv) and (v) provide a computationally simpler method of determining

whether γj lies in Φtan, by allowing us to substitute RTw,s for Tw,s, and thus to perform

calculations in the Weyl group rather than the 0-Hecke algebra. Part (vi) gives an

alternative characterization of (v) in terms of Demazure products.

Theorem 5.8. Let w ≤ x ∈W , and let s = (s1, . . . , sl) be a reduced expression for x. If

γj is an integrally indecomposable element of I(x−1), then the following are equivalent:
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(i) γj ∈ Φtan.

(ii) 1− e−γj is not an explicit factor of Pw,s.

(iii) There exists t ∈ Tw,s not containing j.

(iv) There exists t ∈ RTw,s not containing j.

(v) There exists a reduced subexpression of (s1, . . . , ŝj , . . . , sl) for w.

(vi) δ((s1, . . . , ŝj , . . . , sl)) ≥ w.

Proof. (i) ⇔ (ii) by Proposition 3.5 and Corollary 5.7; (ii) ⇔ (iii) and (iv) ⇔ (v) are

due to definitions of Pw,s, Tw,s, and RTw,s. The proof of (iii) ⇔ (iv) follows from

Tw,s ⊇ RTw,s and the fact that every element of Tw,s contains an element of RTw,s.
(v) ⇔ (vi) There exists a reduced subexpression of s for w not containing sj if

and only if there exists a subexpression of (s1, . . . , ŝj , . . . , sl) for w if and only if

δ((s1, . . . , ŝj , . . . , sl)) ≥ w, where the last equivalence is due to [KM04, Lemma 3.4

(1)]. �

Remark 5.9. For γj ∈ I(x−1), it is known that in type A, γj ∈ Φtan if and only

if s1 · · · ŝj · · · sl ≥ w [LS84]. Theorem 5.8 states that if γj is integrally indecompos-

able in I(x−1), then γj ∈ Φtan if and only if δ((s1, . . . , ŝj , . . . , sl)) ≥ w. These two

statements imply that in type A, if γj is integrally indecomposable in I(x−1), then

δ((s1, . . . , ŝj , . . . , sl)) ≥ w if and only if s1 · · · ŝj · · · sl ≥ w. That this holds for all

w ≤ x would seem to imply that δ((s1, . . . , ŝj , . . . , sl)) = s1 · · · ŝj · · · sl. This is indeed

true, and the above argument can be made rigorous. In [GK21], it is shown that the

statement extends to all simply-laced types. It is also shown that if γj is rationally

indecomposable in I(x−1), then δ((s1, . . . , ŝj , . . . , sl)) = s1 · · · ŝj · · · sl in all types.

Remark 5.10. Suppose that γj is not integrally indecomposable in I(x−1). Then state-

ments (ii) – (vi) of Theorem 5.8 are still equivalent, but statement (i) is no longer

equivalent to the other five in general. The following example shows that (vi) ⇒ (i)

can fail. In type A2, let s = (σ1, σ2, σ1), where σi is the simple transposition which ex-

changes i and i+1. Let w = σ1 and j = 2. Then δ((σ1, σ̂2, σ1)) = δ((σ1, σ1)) = σ1 ≥ w,

so (vi) holds. However, σ1σ̂2σ1 = e 6≥ w. Thus γ2 /∈ Φtan (see Remark 5.9), so (i) fails.

We note that γj is required to be integrally indecomposable in I(x−1) for our proofs

of both implications of Theorem 5.8 (i) ⇔ (ii).

6. Partial flag varieties and cominuscule elements

Let P be a parabolic subgroup containing B. In Section 6.1 we show that Lemma 5.1

and Theorem 5.8 extend from G/B to G/P with no changes other than notation. In

Section 6.2 we apply the results to cominuscule elements of W and cominuscule G/P .

6.1. Extending results to G/P . Let P be a parabolic subgroup containing B. Let

L be the Levi subgroup of P containing T , and WP = NL(T )/T , the Weyl group of L.

Each coset uWP in W/WP contains a unique representative of minimal length; denote
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the set of minimal length coset representatives by WP ⊆ W . Unless stated otherwise,

in this subsection we assume that all Weyl group elements lie in WP . The T -fixed

points of G/P are of the form uP , u ∈WP .

Let P− the opposite parabolic subgroup to P , and let U−P be the the unipotent

radical of P−. Under the mapping ζ : U−P (x) → G/P , y 7→ y · xP , the unipotent sub-

group U−P (x) embeds as a T -stable affine space in G/P containing xP . The unipotent

subgroup U−P (x) ∩ U embeds as an affine subspace, which we denote by VP .

The Schubert variety Xw
P ⊆ G/P is defined to be B−wP , the Zariski closure of the

B− orbit through wP . The Kazhdan-Lusztig variety Y w
x,P is defined to be VP ∩Xw

P .

The following result appears in [Knu09, Section 7.3]:

Theorem 6.1. Let w ≤ x ∈WP . Then VP ∼= V and Y w
x,P
∼= Y w

x .

The next theorem extends the main results of Section 5 to G/P .

Theorem 6.2. Let w ≤ x ∈WP .

(i) Φ(TxX
w
P ) = Φ(U−P (x) ∩ U−) t Φ(TxY

w
x,P ).

(ii) Let γj be an integrally indecomposable element of I(x−1). Then γj ∈ Φ(TxY
w
x,P )

if and only if δ((s1, . . . , ŝj , . . . , sl)) ≥ w.

Proof. (i) Lemma 5.1(i)-(iii) remain valid if all quantities are replaced by their analogs

in G/P . In particular, TxX
w
P
∼= (U−P (x) ∩ U−)× TxY w

x,P .

(ii) Since Y w
x,P
∼= Y w

x , TxY
w
x,P
∼= TxY

w
x . Thus all parts of Theorem 5.8 remain valid if

Φtan = Φ(TxY
w
x ) in Theorem 5.8(i) is replaced by Φ(TxY

w
x,P ). �

6.2. Application to cominuscule Weyl group elements and cominuscule G/P .

In this subsection we discuss conditions on x under which all elements of I(x−1) are

integrally indecomposable, and thus, for any Kazhdan-Lusztig variety containing x,

Theorems 5.8 and 6.2(ii) recover all weights of the tangent space at x. In particular,

we show that our results completely describe the tangent spaces of Schubert varieties

in cominuscule G/P .

Definition 6.3. The element x ∈ W is said to be cominuscule if there exists v ∈ t

such that α(v) = −1 for all α ∈ I(x−1).

This notion was introduced and studied by Peterson (see [GK17, Section 5.2] or

[Ste01] for discussion). In type A, the cominuscule Weyl group elements are precisely

the 321-avoiding permutations [Knu09, p. 25]. As noted in [GK17], the equality I(x) =

−x−1I(x−1) implies that x is cominuscule if and only if x−1 is.

Proposition 6.4. If x ∈W is cominuscule, then all elements of I(x−1) are integrally

indecomposable.
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Proof. If x is cominuscule, then there exists v ∈ t such that α(v) = −1 for all α ∈
I(x−1). Assume that some β ∈ I(x−1) is integrally decomposable. Then β =

∑m
i=1 βi,

where m ≥ 2, βi ∈ I(x−1). Since β(v) = −1 and βi(v) = −1 for all i, this leads to a

contradiction. �

Remark 6.5. The converse of the above proposition is false: there exist non-cominuscule

elements x such that every element of I(x−1) is integrally indecomposable. The follow-

ing example is a variation and extension of [Ste01, Remark 5.4]. In type D4, with the

conventions of [Hum90], consider the element x = s2s1s3s4s2. The inversion set I(x−1)

is equal to {ε1− ε3, ε1 + ε2, ε2− ε3, ε2− ε4, ε2 + ε4}. Every element of I(x−1) is integrally

indecomposable, but the element x is not cominuscule (cf. [Ste01, Remark 5.4]). Note

that [Ste01] uses a different numbering of the vertices of the Dynkin diagram in which

node 3 has degree 3 (see [Ste01, Remark 2.7]), so he writes the element x as s3s1s2s4s3.

Definition 6.6. The maximal parabolic subgroup P ⊇ B is said to be cominuscule if

the simple root αi corresponding to P occurs with coefficient 1 when the highest root

of G is written as a linear combination of the simple roots.

If P is cominuscule, then the corresponding flag varietyG/P is said to be cominuscule

as well. We refer the reader to [BL00, Chapter 9], [Bou02, Chapter VI, §1, Exercise 24],

[GK15] for more on cominuscule G/P . The following proposition gives an important

class of cominuscule Weyl group elements.

Proposition 6.7. If x ∈WP , where P is cominuscule, then x is a cominuscule element

of W .

Proof. If x ∈WP , then U−(x)∩U = U−P (x)∩U (see the discussion before Lemma 4.1

in [GK15], cf. [Knu09]). Hence

I(x−1) = Φ((U−(x) ∩ U) = Φ(U−P (x) ∩ U) ⊂ xΦ(U−P ).

Let α1, . . . , αr denote the simple roots of G; these form a basis for t∗. Denote the dual

basis of t by ξ1, . . . , ξr. Assume that P corresponds to the simple root αi. Since P

is cominuscule, [GK15, Lemma 2.8] implies αi must occur with coefficient −1 in all

α ∈ Φ(U−P ) (when α is written as a linear combination of the simple roots), so for

all such α, we have α(ξi) = −1. It follows that v = xξi satisfies α(v) = −1 for all

α ∈ xΦ(U−P ). Hence α(v) = −1 for all α ∈ I(x−1), so x is a cominuscule element of

W . �

Remark 6.8. The results of this subsection imply that if P is cominuscule and w ≤ x ∈
WP , then Theorem 6.2 characterizes all weights of TxY

w
x,P and TxX

w
P . More generally,

suppose x ∈ W is any cominuscule element (or more generally any element such that

each element of I(x−1) is integrally indecomposable). Then Lemma 5.1 and Theorem

5.8 characterize all weights of TxY
w
x and TxX

w. If in addition P ⊃ B is a parabolic

subgroup such that w, x ∈ WP , then Theorem 6.2 characterizes all weights of TxY
w
x,P

and TxX
w
P .
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11, 313–330, Orbites unipotentes et représentations, III. MR 91g:32042
[Ste01] John R. Stembridge, Minuscule elements of Weyl groups, J. Algebra 235 (2001), no. 2, 722–

743. MR 1805477
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