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Abstract. We give a closed-form formula for the Hilbert function of the tangent
cone at the identity of a Schubert variety X in the Grassmannian in both group
theoretic and combinatorial terms. We also give a formula for the multiplicity of
X at the identity, and a Grébner basis for the ideal defining X(w) N O~ as a
closed subvariety of O™, where O~ is the opposite cell in the Grassmannian. We
give conjectures for the Hilbert function and multiplicity at points other than the
identity.

1 Introduction

The first formulas for the multiplicities of singular points on Schubert va-
rieties in Grassmannians appeared in Abhyankar’s results [1] on the Hilbert
series of determinantal varieties (recall that a determinantal variety gets iden-
tified with the opposite cell in a suitable Schubert variety in a suitable Grass-
mannian). Herzog-Trung [6] generalized these formulas to give determinan-
tal formulas for the multiplicities at the identity of all Schubert varieties in
Grassmannians. Using standard monomial theory, Lakshmibai-Weyman [7]
obtained a recursive formula for the multiplicities of all points in Schubert
varieties in a minuscule G/P; Rosenthal-Zelevinsky [9] used this result to
obtain a closed-form determinantal formula for multiplicities of all points in
Grassmannians.

2 Summary of Results

Let K be the base field, which we assume to be algebraically closed, of arbi-
trary characteristic. Let G be SL,,(K), T the subgroup of diagonal matrices
in G, and B the subgroup of upper diagonal matrices in G. Let R be the root
system of G relative to 7', and R the set of positive roots relative to B. Let
W be the Weyl group of G. Note that W = S,,, the group of permutations
of the set of n elements. Let P; be the maximal parabolic subgroup

* *
! { ‘ <0<n—d)xd *>}

Let Rp,, R;Sd, and Wp, denote respectively the root system, set of positive
roots, and Weyl group of P,. The quotient W/Wp,, with the Bruhat order,
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is a distributive lattice. The map a — s,Wp, taking a positive root to its
corresponding reflection, embeds R+\Rj;d in W/Wp,. We shall also denote
the image by R*\R;Sd. It is a sublattice of W/Wp,.

A multiset is similar to a set, but with repetitions of entries allowed.
Define the cardinality of a multiset S, denoted by |S|, to be the number of
elements in S, including repetitions. Define a uniset to be a multiset which
has no repetitions. If S is a set, define $* to be the collection of all multisets
which are made up of elements of S.

A chain of commuting reflectionsin W/Wp, is a nonempty set of pairwise-
commuting reflections {sq,,-.-,8a,}, @ € R+\RJISd, such that so, > -+ >
Sa,; we refer to ¢ as the length of the chain. For a multiset S € (RT\ R}, )*,
define the chainlength of S to be the maximum length of a chain of commuting
reflections in S.

Fix w € W/Wp,. Define S,, to be the multisets S of (R+\RR)*, such
that the product of every chain of commuting reflections in S is less than or
equal to w; similarly, define S}, to be the unisets of (R*\ R}, )* having the
same property. For m a positive integer, define

Sw(m) =4{S € Sy : |S|=m}

Si,(m)={S €S, :|S|=m}.

We can now state our two main results. First, letting X (w) denote the
Schubert variety of G/ P, corresponding to w € W/Wp,, the Hilbert function
of the tangent cone to X (w) at the identity is given by

Theorem 1 hrc,,x(w)(m) = |Sw(m)|,m € N.

Second, letting M denote the maximum cardinality of any element of S! , the
multiplicity at the identity is given by

Theorem 2 mult;; X (w) = |{S € S, : |S| = M}|.

3 Preliminaries

3.1 Multiplicity of an Algebraic Variety at a Point

Let B be a graded, affine K-algebra such that B; generates B (as a K-
algebra). Let X = Proj(B). The function hg(m) (or hx(m)) = dimg B,
m € Z is called the Hilbert function of B (or X). There exists a polynomial
Pp(z) (or Px(x)) € Q[z], called the Hilbert polynomial of B (or X), such
that fp(m) = Pg(m) for m > 0. Let r denote the degree of Pg(z). Then
r = dim(X), and the leading coefficient of Pg(z) is of the form cp/r!, where
¢ € N. The integer cpg is called the degree of X, and denoted deg(X). In the
sequel we shall also denote deg(X) by deg(B).
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Let X be an algebraic variety, and let P € X. Let A = Ox_p be the stalk
at P and m the unique maximal ideal of the local ring A. Then the tangent
cone to X at P, denoted TCp(X), is defined to be Spec(gr(A4,m)), where
gr(A,m) = @‘j‘;omj/mj*l. The multiplicity of X at P, denoted multp(X),
is defined to be deg(Proj(gr(A4,m))). If X C K™ is an affine closed subva-
riety, and mp C K[X] is the maximal ideal corresponding to P € X, then
gr(K[X],mp) = gr(A, m).

3.2 Monomial Orders, Grobner Bases, and Flat Deformations

Let A be the polynomial ring K[z1,---,zp]. A monomial order > on the
set of monomials in A is a total order such that given monomials m, m,
mo, m # 1, my > mo, we have mm; > m; and mm; > mmsy. The largest
monomial (with respect to >) present in a polynomial f € A is called the
initial term of f, and is denoted by in(f).

The lexicographic order is a total order defined in the following manner.
Assume the variables z1,...,z, are ordered by x,, > --+ > x1. A monomial
m of degree r in the polynomial ring A will be written in the form m =
Tqy -y, withn >4y > --- >4, > 1. Then z;, ---2x;, > xj ---x;, in the
lexicographic order if and only if either 7 > s, or 7 = s and there exists an
l < r such that i1 = j1,...,4 = ji, 4141 > Ji+1- It is easy to check that the
lexicographic order is a monomial order.

Given an ideal I C A, denote by in(I) the ideal generated by the initial
terms of the elements in I. A finite set G C I is called a Grébner basis of I
(with respect to the monomial order ), if in(/) is generated by the initial
terms of the elements of G.

Flat Deformations: Given a monomial order and an ideal I C A, there ex-
ists a flat family over Spec(K[t]) whose special fiber (¢t = 0) is Spec(A/in(I))
and whose generic fiber (¢ invertible) is Spec(A/I @ K[t,t~1]). Further, if I is
homogeneous, then the special fiber and generic fiber have the same Hilbert
function (see [4] for details).

3.3 Grassmannian and Schubert Varieties

The Pliicker Embedding: Let d be such that 1 < d < n. The Grassman-
nian G4, is the set of all d—dimensional subspaces U C K. Let U be an

element of Gy, and {a1,...aq} a basis of U, where each qa; is a vector of the
form
alj
an .
a; = . , with a;; € K.

an]‘
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Thus, the basis {a1,--- ,aq} gives rise to an n x d matrix A = (a;;) of rank
d, whose columns are the vectors ay,--- ,aq.
We have a canonical embedding

p:Gan = PANK"), Ursfar A--- A ag)
called the Pliicker embedding. Let
Ijn={i=(i1,...,ig) €N? : 1<iy <---<ig<n}.

Then the projective coordinates (Pliicker coordinates) of points in P(ACK™)
may be indexed by I ,; for i € Iy ,, we shall denote the i-th component of p
by pi, or ps, ... 4, If a point U in Gy, is represented by the n x d matrix A
as above, then p;, ... ;,(U) = det(4;, . ;,), where A;, ;, denotes the d x d
submatrix whose rows are the rows of A with indices i1, ... 144, in this order.

Identification of G/ Py with G4,,: Let G, T, B, and P, be as in Section 2.
Let {e1,...,en} be the standard basis for K. For the natural action of G on
P(AYK™), the isotropy group at [e; A - -+ A eg4] is Py, while the orbit through
[ex1 A -+ Aeg] is Ggpn. Thus we obtain an identification of G/P; with Gy p.
We also note that W/Wp, (= S,,/(Sa X Sp—a)) may be identified with I .

Schubert Varieties: For the action of G on Gy 5, the T-fixed points are
precisely {[e;],i € I4n}, where e; = e;; A--- Aei, . The Schubert variety X;
associated to 7 is the Zariski closure of the B-orbit Ble; ] with the canonical
reduced scheme structure.

We have a bijection between {Schubert varieties in G4} and I ,. The
partial order on Schubert varieties given by inclusion induces a partial order
(called the Bruhat order) on 14, (= W/Wp,); namely, given i = (i1, ...,1q),
Z: (jla v ajd) € Id,na

12>j < it > ji,forall 1 <t <d.

We note the following facts for Schubert varieties in the Grassmannian
(see [5] or [8] for example):

¢ Bruhat Decomposition: X; = U Ble;).
i<i
e Dimension: dim X; = Z it — L.
1<t<d
e Vanishing Property of a Pliicker Coordinate:
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Standard Monomials: A monomial f = pg, - ps,, 8; € W/Wp, is said to
be standard if
6> 26, (1)

Such a monomial is said to be standard on the Schubert variety X (), if in
addition to (1), we have 6 > 6;.

Let w € W/Wp,. Let R(w) = K[X (w)], the homogeneous coordinate ring
for X (w), for the Pliicker embedding. Recall the following two results from
standard monomial theory (cf. [5]).

Theorem 3 The set of standard monomials on X (w) of degree m is a basis
for R(w)p,.

Theorem 4 For w € W/Wp,, let I, be the ideal in K[Ga,] generated by
{po,8 £ w}. Then R(w) = K[Gqp]/lw.

The Opposite Big Cell O~: Let U~ denote the unipotent lower tri-
angular matrices of G = SL,(K). Under the canonical projection G —
G/Py, g = gPi(= gleid]), U~ maps isomorphically onto its image U~ [e;q]-
The set U~ [e;q] is called the opposite big cell in G4, and is denoted by O~.
Thus, O~ may be identified with

Idgxa

Td+11 --- Td4+ld . )
. . , €K, d+1<i<n1<j<d,. (2

Inl Ind

Thus we see that O~ is an affine space of dimension (n — d) x d, with id
as the origin; further K[O~] can be identified with the polynomial algebra
Klz_3,8 € RT \R;Sd]. To be very precise, denoting the elements of R as in [2],
we have RT\ R}, ={ej —¢;, d+1<i<mn, 1<j<d};given § € RY\ R},
say = €j — €;, we identify 25 with 2;;. We denote by s(; ;) (or 5(;,;)) the
reflection corresponding to 3, namely, the transposition switching i and j.

Evaluation of Pliicker Coordinates on O~: Let j € I;,. We shall

denote the Pliicker coordinate p; lo- by fi . Let us denote a typical element
_ Idaxa
A€ O by Y

(J1y---,Ja), and let j,. be the largest entry < d. Let {ki,...,kq—.} be the
complement of {j1,...,7-} in {1,...,d}. Then this minor of X is given by

). Then f; is simply a minor of X as follows. Let j =

column indices k1, ..., ks and row indices j,41,...,ja (here the rows of X
are indexed as d+ 1,...,n).

Conversely, given a minor of X, say, with column indices b1, ...,b,, and
row indices 44—s41,. . ., %4, then that minor is the evaluation of f; at X, where

J = (j1,---,ja) may be described as follows: {j1,...,ja—s} is the complement
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of {by,...,bs} in {1,...,d}, and j4_st1,...,Jq are simply the row indices
(again, the rows of X are indexed as d+1,...,n).

Note that if j = (1,...,d), then p; evaluated at X is 1. In the above
discussion, therefore, we must consider the element 1 (in K[O~]) as the minor
of X with row indices (and column indices) given by the empty set.

Example 1 Consider Gy 4. Then

1 0
_ 0 1
o = y Tij € K
T31 T32
T41 T42
On O™, we have p13 = 1, p13 = T3z, P14 = Taz, P23 = T31, P24 = T41,

P34 = X31T42 — T41232.

Note that each of the Pliicker coordinates is homogeneous in the local coor-
dinates z;;.

4 The Hilbert Function of TC;; X (w)

In view of the Bruhat decomposition, in order to determine the multiplicity
at a singular point z, it is enough to determine the multiplicity of the T-fixed
point in the B orbit Bx. In this section, we shall discuss the behavior at a
particular T-fixed point, namely the identity.

4.1 The Variety Y(w)

We define Y (w) C G4 to be X (w)NO~. Since Y (w) C X (w) is open dense,
and id € Y (w), we have that TC;;Y (w) = TC;3X (w). As a consequence of
Theorem 4, Y (w) C O~ is defined as an algebraic subvariety by the homo-
geneous polynomials fg,6 £ w; further, id € O~ corresponds to the origin.
Thus we have that gr(K[Y (w)],m;q) = K[Y (w)]. Hence,

TCiaX () = TCiaY (w) = Spec(gr(K[Y ()], mia))
= Spec(K[Y (w)]) = ¥ (w). 3)

4.2 Monomials and Multisets

For a monomial p = z,, -+ T4, € K[O™], define Multisupp(p) to be the
multiset {«;,,...qa;, }. It follows immediately from the definition that Mul-
tisupp gives a bijection between the monomials of K[O~] and the multi-
sets of (R+\RJ}SL{)*, pairing the square-free monomials with the unisets. Let
w € W/Wp,. We call a monomial w-good if it maps under Multisupp to an
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element of S,,. Note that the w-good square-free monomials are precisely
those which map to S),.

Define a monomial order > on K[O7] in the following manner. We say
xij > xpy if @ >4, orif i =4’ and j < j'. Note that this extends the partial
order o > 3 <= s > $p (in the Bruhat order). The monomials are then
ordered using the lexicographic order.

Define the monomial ideal J,, C K[O~] to be the ideal generated by
{infy,8 £ w}, and let A, = K[O~]/J,,. With our ordering, Multisupp(in fy)
is a commuting chain of reflections whose product is 6. Thus the non w-
good monomials form a vector space basis for .J,,, and therefore the w-good
monomials form a basis for A4,,.

4.3 Sketch of Proof of Theorems 1 and 2
In view of (3) and the above discussion, Theorem 1 follows immediately from
Lemma 1 hg{y(w)(m) = ha,(m),m € N.
Theorem 2 is also a consequence. Indeed,
mult;g X (w) = deg(K[TCiq X (w)]) = deg(K[Y (w)]) = deg(Aw)-

Since A, is an affine quotient of an ideal generated by square-free monomials,
letting M be the maximum degree of a square-free monomial in A,,, we have

(cf. [3])

deg(Ay) = |{p € Ay : pis a square-free monomial and deg(p) = M}|
= |{p € K[O7] : pis asquare-free w-good monomial and deg(p) = M }|
=|{S €S, : |S|=M}|

yielding Theorem 2.

The proof of Lemma 1 relies on an inductive argument which shows
directly that both functions agree for all positive integers m. Note that
K[Y(w)] = K[X(w)](p,,)- Thus, as a consequence of Theorem 3, K[Y (w)]
has a basis consisting of monomials of the form fq, -+ fo,, w0 > 61 > -+ >
0;. If SMy(m) denotes the basis elements of degree m, then hy(,)(m) =
|SMy(m)|. Letting d = d,, be the degree of w (see section 4.4 below for

definition), as a consequence of standard monomial theory we have
SMy(m +d) = SM,(m)USMy(m + d) (4)

where SMy(m + d) = U,,, SMy,(m + d), the union being taken over the
divisors X (w;) of X (w) (cf. [7]).

We have that |SMpg(m+d)| = |, SMuw, (m+d)| can be set-theoretically
written as the integral linear combination of terms of the form |SM,,, (m+d)|
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and terms of the form |SM,;(m +d) N --- N SM,, (m + d)|. Further, it can
be shown that

SMy;(m+d)N---NSMy, (m+d) = SMg(m +d),

where 6 is given by X () = X(w;) N --- N X (wg). (Note that I, being a
distributive lattice implies that for 7,¢ € I, X(7) N X(¢) is irreducible.)
Thus,

|ISMg(m +d)| = Z Ay |SMyy (m + d)|, for some a,, € Z. (5)

w' <w

Taking cardinalities of both sides of (4), we obtain

hipy (wy(m +d) = hipy () (m) + Z awhgry (wy(m +d).

w! <w

Equivalently, hg[y () satisfies the difference equation

d(w,m +d) = p(w,m) + Y awd(w',m + d). (6)

w' <w

To prove Lemma 1, it suffices to show that h4, (m) satisfies (6) for all m €
Z o, since it is a straightforward verification that hgy () (m) and ha,, (m)
have the same initial conditions.

As stated earlier, K[A,,] has as basis the w-good monomials of K[O7],
which are in bijection with the elements of Sy,. Thus hgpa,j(m) = |Sw(m)|,
and it suffices to show that |S,,(m)| satisfies (6). We can write

Sw(m +d) = (Sw(m+d)\ Sg(m +d)USy(m +d), (7)

where Sp(m +d) =, Sw; (m +d), the union being over the divisors X (w;)
of X (w). Following the identical arguments used to deduce (5) (replacing
“SM” by “S” everywhere), one obtains

1S(m +d)| = aw|Sw(m +d)], (8)

w!' <w

for the same integers a, as in (5).

Establishing an explicit bijection between S, (m + d)\ Sg(m + d) and
Sw(m) completes the proof, for then (taking cardinalities of both sides of
(7)), one sees that ha, (m) satisfies (6) for all m € Z>,.

In view of the discussion of flat deformations in Section 3.2, Lemma 1 also
implies

Corollary 1 The set {fs.0 £ w} C K[O~] forms a Gribner basis for the
ideal it generates.
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4.4 Combinatorial Interpretation

We call a multiset S of (R*\R;d)* a t-multipath, if the chainlength of S
is t. If S has no repeated elements (i.e. it is a uniset), then we call it a
t-unipath. Define s € S to be a chain-maximal element of S if there is no
element in S strictly greater than s which commutes with s. Any t-multipath
S can be written in the following manner as the union of ¢ nonintersecting
1-multipaths: if S; is the i*" 1-multipath, then S;, is the multiset of chain-
maximal elements (including repetitions) of S\U%_, Sy (for i =0,--- ,¢t —1,
where Sy is defined to be the empty set). If the t-multipath S is a t-unipath,
then each S; will be a 1-unipath.

Fix w € W/Wp,. There is a unique expression w = sq, - Sa,, such that
Sai, > Sau, ., for all k, and all the reflections pairwise commute; Ew is called
the degree of w.

Example 2 Let w = (3,5,7,8) € Iyg. Then w = 5(31) S(7,2) 5(5,4), where
5(8,1) > S(7,2) > S8(5,4) 5 a chain of commuting reflections. Thus d,, = 3.

Let Hj = {& € R"\R}, |sa < Sa;, }. We say that a t-multipath S is
w-good if, when written as the union of weighted 1-multipaths Uf_,Sy as
above, we have that the elements of S; are in H;,j = 1,--- ,t. Any multiset
in (R+\R}td)* is a t-multipath for some t; it is said to be w-good if the
corresponding t-multipath is w-good.

It can be seen that the combinatorial property that a multiset (resp.
uniset) S of (R \RE)* is w-good is equivalent to the group-theoretic prop-
erty that S € Sy, (resp. S € S;,). Thus Theorem 1 is equivalent to the asser-
tion that hrc,,x (w)(m) is the number of w-good multisets of (BT \ R}td)* of
degree m. Letting M be the maximum cardinality of a w-good uniset, Theo-
rem 2 is equivalent to the assertion that mult;; X (w) is the number of w-good
unisets of cardinality M.

Example 3 Let w = $(152) 5(13,4) S(10,5) € Ir16. We have that sg52) >
5(13,4) > S(10,5) 5 a chain of commuting reflections, and thus d,, = 3.

The diagram below shows the lattice R*\RR, where the reflection s; ;) is
denoted by i,j. The set S of reflections which lie along the three broken-line
paths is an example of a w-good uniset of mazimum cardinality. In fact, any
w-good uniset of mazximum cardinality can be seen as the set of reflections
lying on three paths in the lattice, satisfying the following properties:

e One path starts and ends at “X”, the second at “Y”, and the third at
(IZ”.

e FEach path can move only down or to the right.

o The paths do not intersect.

Thus the number of ways of drawing three such paths is mult;g X (w).
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8.1 >R 83 Y . E— 86 87

9.1 92 93 9i4 95 96 97
10,1 1é,2 103 1é,4 10,5 106 - - - w7
11,1 tip- - 1,3 1 M5 - - - - 116 117
|
12,1 122 123 - ——- 424 - - - 125 12:',6 12,7
13,1 132 133 13,4 1é|f,5 136~ - Y7
|
14,1 14,2 143 14,4 145 - - -~ 146 - - - - 147
151 15,2 153 154 155 156 X?
16,1 16,2 16,3 16,4 165 166 16,7
Fig. 1.

5 Conjectures on the Behavior at Other Points

Let w,7 € W/Wp,. Define S,, ; to be the multisets S of (R \ R}td)*, such
that for every chain of commuting reflections s, > -+ > Sa,, Sa; € S, We
have that w > 7sa, - - a,; define S}, | to be the unisets of (R*\ R}, )* having
the same property. For m a positive integer, define

Sw,r(m)={S € Sy :|S|=m}

Slyrm) = (S € S, S| = m).

We state two conjectures. First, the Hilbert function hrc x (w)(m) of the
tangent cone to X (w) at 7 is given by

Conjecture 1 hrc, x(w)(m) = |Sw,-(m)|,m € N.

!

Second, letting M denote the maximum cardinality of an element of Sj, .

the multiplicity mult, X (w) of X (w) at 7 is given by

Conjecture 2 mult, X(w) = {S €S, . : |S|=M}|.
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