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Abstract. We give combinatorial descriptions of the restrictions to T -fixed points of
the classes of structure sheaves of Schubert varieties in the T -equivariant K-theory of
Grassmannians and of maximal isotropic Grassmannians of orthogonal and symplec-
tic types. We also give formulas, based on these descriptions, for the Hilbert series
and Hilbert polynomials at T -fixed points of the corresponding Schubert varieties.
These descriptions and formulas are given in terms of two equivalent combinatorial
models: excited Young diagrams and set-valued tableaux. The restriction fomulas
are positive, in that for a Schubert variety of codimension d, the formula equals (−1)d

times a sum, with nonnegative coefficients, of monomials in the expressions (e−α−1),
as α runs over the positive roots. In types An and Cn the restriction formulas had
been proved earlier by [Kre05], [Kre06] by a different method. In type An, the for-
mula for the Hilbert series had been proved earlier by [LY12]. The method of this
paper, which relies on a restriction formula of Graham [Gra02] and Willems [Wil06],
is based on the method used by Ikeda and Naruse [IN09] to obtain the analogous for-
mulas in equivariant cohomology. The formulas we give differ from the K-theoretic
restriction formulas given by Ikeda and Naruse [IN11], which use different versions
of excited Young diagrams and set-valued tableaux. We also give Hilbert series and
Hilbert polynomial formulas which are valid for Schubert varieties in any cominuscule
flag variety, in terms of the 0-Hecke algebra.
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1. Introduction

In this paper we use equivariant K-theory to obtain information about the local

structure of Schubert varieties in Grassmannians or maximal isotropic Grassmannians

of orthogonal or symplectic type. Such a Grassmannian is a generalized flag variety

of the form X = G/P , where G is one of the groups G = SLn(C), G = SOn(C) or

G = Sp2n(C), and P is a parabolic subgroup. These varieties have long attracted

attention because of their connections with combinatorics and representation theory.

Let B ⊃ T denote a Borel subgroup and maximal torus of G, and let B− denote the

opposite Borel subgroup to B. If Y is a Schubert variety in X (that is, the closure

of a B−-orbit in X), then the structure sheaf OY defines an element [OY ] in KT (X),

the Grothendieck group of T -equivariant coherent sheaves on X. If i : {x} ↪→ X is the

inclusion of a T -fixed point, then the class i∗x[OY ] is an element in the representation

ring R(T ) of T . The restriction i∗x[OY ] enables one to describe the ring of functions on

the tangent cone of Y at x as a representation of T . We will refer to the class i∗x[OY ]

as the restriction or pullback of the class [OY ] to the fixed point x. The main results

of this paper are combinatorial formulas for these pullback classes. Such formulas have

particular interest because in all of these cases (except for the odd orthogonal case)

the generalized flag variety is cominuscule, which means that the restriction formulas

yield formulas for the Hilbert series and Hilbert functions of the local rings OY,x.1

1The maximal isotropic Grassmannians in the SO(2n+ 1) and SO(2n+ 2) cases are isomorphic, so
one can obtain Hilbert series and multiplicity formulas in the odd orthogonal case as well. See Section
5.2.
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As a consequence of our formulas we deduce that in these examples (and in fact for

Schubert varieties in any cominuscule flag variety), the Hilbert function coincides with

the Hilbert polynomial. Note that the restriction fomulas in this paper are positive,

in that for a Schubert variety of codimension d, the formula is (−1)d times a sum,

with nonnegative coefficients, of monomials in the expressions (e−α − 1), as α runs

over the positive roots. Similar positivity results occur in the structure constants for

the equivariant K-theory of flag varieties; see [GR04], [GK08]. One consequence of the

positivity in our restriction formulas is that the constants defining the Hilbert series

and Hilbert polynomial are given by positive termed enumerative formulas, i.e., one

obtains them by counting well defined algebraic or combinatorial objects.

The combinatorial formulas for the i∗x[OY ] were obtained earlier, in the cases of the

Grassmannian and the Lagrangian Grassmannian, by Kreiman [Kre05], [Kre06]. The

formulas were derived there by using equivariant Gröbner degenerations of Schubert

varieties in the neighborhood of a T -fixed point; these degenerations were obtained

in [KR03], [Kre03], [KL04], and [GR06]. This method is discussed in more detail in

Section 4. The approach taken in this paper is different, and modeled on the approach

taken by Ikeda and Naruse [IN09], who obtained restriction formulas in equivariant

cohomology. The main tool of Ikeda and Naruse is a formula of Andersen-Jantzen-

Soergel [AJS94] and Billey [Bil99]. This gives the restriction of a Schubert class to a

T -fixed point in terms of expressions in what is called the nil-Coxeter (or nil-Hecke)

algebra. The nil-Coxeter formula works for the full flag variety (and hence for any

generalized flag variety). In the classical cominuscule cases, however, it can be used

to give formulas in terms of combinatorics related to Young diagrams. To obtain the

formulas in equivariant K-theory, we replace the cohomology formula by an analogous

K-theory formula in the 0-Hecke algebra, obtained by Graham and Willems. We

use this to obtain general formulas for the Hilbert series and Hilbert polynomials for

Schubert varieties of cominuscule flag varieties at T -fixed points. In the Grassmanian

cases, we again relate these formulas to Young diagrams. Our formulas are in terms of

excited Young diagrams (the term is due to Ikeda and Naruse [IN09]; these were called

subsets of Young diagrams in [Kre05], [Kre06]). We have generalized the definition of

excited Young diagrams for the K-theory formulas; the earlier definitions, which were

used for the equivariant cohomology formulas, are what we call reduced excited Young

diagrams. Reduced excited Young diagrams were discovered independently by Kreiman

[Kre05], [Kre06] and Ikeda and Naruse [IN09]. In type An, excited Young diagrams

are the same combinatorial objects as the pipe dreams of [WY12] (see also [LY12]).

We also give formulas in terms of an alternative, but equivalent, combinatorial model,

namely set-valued tableaux. The set-valued tableaux which we use were introduced in

[Kre05], [Kre06]. In type An, they also appeared in [WY12], where they were identified

as special types of flagged set-valued tableaux. Flagged set-valued tableaux, which

were introduced in [KMY09], generalize both set-valued tableaux [Buc02] and flagged

tableaux [Wac85].
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Ikeda and Naruse [IN11] used somewhat different versions of excited Young dia-

grams and set-valued tableaux to obtain combinatorial formulas for functions Gλ(x|b),
GB

(n)
λ (x|b), GC(n)

λ (x|b), and GD
(n)
λ (x|b). These are functions in variables x1, x2, . . . , xn

and b1, b2, . . ., which depend on a parameter β. The function Gλ(x|b) is equal to the

factorial Grothendieck polynomial of Macnamara [McN06]. These functions represent

the classes of structure sheaves of Schubert varieties in equivariant K-theory, in types

A, B, C, and D, respectively. In particular, Ikeda and Naruse prove that if G is of

type A, B, C, or D, then if one takes a function of the appropriate type, sets β = −1,

and chooses an appropriate specialization of the variables (depending on µ), the result

is the restriction of [OXλ ] to the point corresponding to µ. Thus, their results lead to

combinatorial formulas for the pullbacks of the structure sheaves of Schubert varieties.

These formulas are different from the formulas given in this paper. See Section 5.4 for

examples comparing the formulas in this paper with the results of [IN11].

Since the 0-Hecke restriction formula is valid for any generalized flag variety, it is nat-

ural to ask why we focus on the Grassmannians and maximal isotropic Grassmannians.

There are are two important properties which are relevant to these cases. First, given

any T -fixed point in a cominuscule flag variety, there exists a vector ξ in the Lie algebra

of T , such that for any weight α of T on the tangent space of the flag variety at that

point, α(ξ) = −1 (see Proposition 2.9). This property implies that in the cominuscule

cases, restrictions in equivariant K-theory give information about the Hilbert series

(see Proposition 2.2). Second, in the cases we consider—that is, in all cominuscule flag

varieties, as well as the maximal isotropic Grassmannians in the odd orthogonal case—

the Schubert varieties and T -fixed points are parametrized by elements of the Weyl

group which are fully commutative in the sense of Stembridge [Ste96]. This property

is used when we connect the 0-Hecke formula to Young diagrams.

The contents of the paper are as follows. Section 2 describes the relation between

restriction formulas in equivariant K-theory and the tangent cone at T -fixed points,

and explains how, in the case of cominuscule flag varieties, this is connected with

multiplicities and Hilbert series. This connection has been known for some time; we

learned about it from Michel Brion, who pointed out that in the cominuscule case,

equivariant multiplicities can be used to compute multiplicities. Section 2.1 contains

Proposition 2.1, which is a version of a result in an unpublished paper of Bressler [Bre],

who used it to give a proof of a formula of Kumar [Kum96, Theorem 2.2] describing

multiplicities in the tangent cone of Schubert varieties in terms of the 0-Hecke algebra.

This is is also related to work of Rossmann [Ros89]. The connection to Hilbert series

is given in Proposition 2.2. This connection to the Hilbert series is known—see for

example [IN09, Section 9] or [LY12]; we have given some details not explained in these

references. Section 2.2 recalls some definitions about the equivariant K-theory of the

flag variety, and states the 0-Hecke pullback formula (Theorem 2.6); related formulas

were given by Graham [Gra02] and Willems [Wil06]. Section 2.3 contains Proposition
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2.9, which shows that cominuscule flag varieties have the geometric property needed to

apply Proposition 2.2. We originally learned this result from Brion; it is also used in

[IN09, Section 9]. Combining the above results yields Hilbert series and Hilbert poly-

nomial formulas (Theorem 2.10) and a formula for the multiplicity of a T -fixed point

(Corollary 2.11), which are valid for arbitrary (not necessarily classical) cominuscule

flag varieties; these formulas are given in Section 2.4.

Section 3 proves some results about fully commutative elements and the 0-Hecke

algebra which we need to obtain the connection with Young diagrams.

Section 4 concerns the case where G = SL(n,C), so X = Grass(d, n), the Grass-

mannian variety of all d-dimensional subspaces of Cn. This case is the foundation of

all the classical cases. Section 4.1 gives background about Grassmannian permutations

and partitions, which index the Schubert varieties and the T -fixed points. Section 4.2

defines excited Young diagrams. The first main result is Theorem 4.5, the restriction

formula in terms of excited Young diagrams. This theorem is proved by finding a

reduced expression for a Grassmannian permutation which is related to the Young di-

agram of the corresponding partition (Section 4.2), and then interpreting the terms of

the 0-Hecke restriction formula in terms of excited Young diagrams (Proposition 4.8).

Section 4.3 defines set-valued tableaux, which are in some ways easier to work with

than excited Young diagrams; Theorem 4.15 gives the restriction formula in terms

of set-valued tableaux. This theorem is proved by establishing a bijection between

appropriate collections of set-valued tableaux and excited Young diagrams.

Section 5 deals with the remaining classical cases, the maximal isotropic Grassman-

nians of orthogonal or symplectic types. In these cases, the Schubert varieties and

T -fixed points are indexed by shifted Young diagrams. The restriction formulas, which

are obtained by adapting the methods of the previous section, are in terms of excited

shifted Young diagrams (Theorem 5.6) and set-valued shifted tableaux (Theorem 5.17).

Appendix A reviews some facts about root systems and Weyl groups. Appendix B

explains the relationship between different versions of the 0-Hecke restriction formula.

2. Equivariant K-theory of the flag variety, Hilbert series and

multiplicities

2.1. Equivariant K-theory, Hilbert series and multiplicities. In this section we

review some results relating equivariant K-theory to the local rings of functions at

T -fixed points. We have included some proofs for the convenience of the reader. Let

T = (C∗)m denote a complex torus. Let R(T ) denote the representation ring of T ; this

is the set of all Z-linear combinations of eλ, where λ is a weight of T .

If M is a scheme with a T -action, let KT (M) denote the Grothendieck group of

coherent sheaves on X. If M is smooth, then KT (M) can be identified with the

Grothendieck group of vector bundles on M . A T -equivariant coherent sheaf F on M
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defines a class [F ] ∈ KT (M). In particular, a closed T -invariant subscheme Z of M

defines a class [OZ ] ∈ KT (M). If M is a point then KT (M) is identified with R(T ).

Let X be a smooth T -variety and x ∈ XT be an isolated fixed point. Let Φ(Tx)

denote the set of weights of T on the tangent space TxX. The fixed point x is said to

be attractive if there is a half-space in t∗ containing Φ(Tx). This implies that x has

a T -stable neighborhood in X which is T -equivariantly isomorphic to TxX, and such

that x corresponds to the origin in TxX. Using this fact we can prove results about the

pullbacks of classes in KT (X) to x by reducing to the case where X is a vector space

with a linear T -action and x is the origin (see Proposition 2.1).

Let Y ⊂ X be a T -stable subscheme containing x, and let OY,x denote the local ring

of Y at x with maximal ideal m = mY,x. Let GrOY,x = ⊕∞i=0m
i/mi+1. By definition,

the tangent cone of Y at x is Spec(GrOY,x) (see [Kum96, Section 2]). Let R̂ denote

the set of expressions of the form
∑

µ∈T̂ cµe
µ. The group T acts on GrOY,x with finite

multiplicities, so we can define char(GrOY,x) ∈ R̂ as char(GrOY,x) =
∑
mµe

µ, where

mµ is the multiplicity of the weight µ in GrOY,x.

Let f be an element of the quotient field of R(T ) of the form

f =
r∏

µ∈T̂ (1− eµ)nµ
,

where r ∈ R(T ), nµ ∈ Z≥0, and such that there is a half-space in t∗ containing all the

µ with nµ 6= 0. Define F (f) ∈ R̂ to be the series

r
∏
µ∈T̂

(
∑

1 + eµ + e2µ + · · · )nµ).

The following proposition is a version of a result in an unpublished paper of Bressler,

and is also related to [Ros89, Lemma 1.1]. Bressler [Bre] used this result to give a proof

of a formula of Kumar [Kum96, Theorem 2.2] describing the multiplicities in the ring

of functions on the tangent cone to a Schubert variety at a T -fixed point in terms of

the 0-Hecke algebra (see [Kum96, Remark 2.13]).

Proposition 2.1. Let x be an attractive fixed point in the smooth T -variety X, and let

Y ⊂ X be a T -stable subscheme containing X. Let i : {x} ↪→ X denote the inclusion,

and [OY ] ∈ KT (X) the class of the structure sheaf of Y . Then

char(GrOY,x) = F

(
i∗[OY ]∏

µ∈Φ(Tx)(1− e−µ)

)
.

Proof. There is a T -stable affine open neighborhood of x in X which is T -equivariantly

isomorphic to V = TxX (see [BB76, Corollary 2]). We can replace X by this neigh-

borhood and therefore assume X = V = SpecA, where A = S(V ∗). Let I denote the

ideal of Y in A and B = A/I, so Y = SpecB. Let n denote the maximal ideal of x in

B. Then OY,x = Bn, and m = nBn ⊂ Bn. Define GrB = ⊕∞i=0n
i/ni+1. The natural



EXCITED YOUNG DIAGRAMS 7

map B/ni → Bn/m
i is an isomorphism for all i. This implies that the natural map

ni/ni+1 → mi/mi+1 is an isomorphism for all i, so we obtain a T -equivariant isomor-

phism GrOY,x → GrB. Therefore char(GrOY,x) = char(GrB), which in turn is equal

to char(B).

There exists a T -equivariant resolution of B by finite free A-modules

0→ Fd → Fd−1 → · · · → F0 → B → 0

where each Fj is isomorphic to ⊕iA⊗Cλi,j . Here A⊗Cλi,j denotes the A-module A with

T -action twisted by λi,j ∈ T̂ . (See [Ros89, Lemma 1.1].) This resolution corresponds

to the resolution of OY over OX :

0→ Fd → Fd−1 → · · · → F0 → OY → 0

where Fj is isomorphic to ⊕iOX ⊗ Cλi,j In R(T ), i∗[OX ] = 1, and therefore

i∗[OY ] =
∑
i,j

(−1)jeλi,j i∗[OX ] =
∑
i,j

(−1)jeλi,j .

On the other hand,

char(B) =
∑
j

(−1)j char(Fj) =
∑
i,j

(−1)jeλi,j char(A)

=
∑
i,j

(−1)jeλi,jF

(
1∏

µ∈Φ(Tx)(1− e−µ)

)

= F

(
i∗[OY ]∏

µ∈Φ(Tx)(1− e−µ)

)
,

as desired. �

The Hilbert function of GrOY,x is by definition the function n 7→ dim(mn/mn+1).

For n >> 0, this function is a polynomial, which we denote by h(Y, x)(n). Let r denote

the degree of h(Y, x)(n). The multiplicity of Y at x, which we denote by mult(Y, x),

is r! times the leading coefficient of h(Y, x)(n). The Hilbert series H(Y, x)(t) is the

generating function associated to the Hilbert function of GrOY,x. By definition,

H(Y, x)(t) =

∞∑
i=0

dim(mi/mi+1)ti.

Let S denote a formal sum S =
∑

µ∈T̂ cµe
µ. Suppose that there exists an element

ξ ∈ t such that µ(ξ) is a nonnegative integer for each µ with cµ 6= 0, and such that for

each n ∈ Z≥0, there exist only finitely many µ with cµ 6= 0 and µ(ξ) = n. Then define

evξS to be the power series evξS =
∑

µ∈T̂ t
µ(ξ).
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Proposition 2.2. Keep the hypotheses of Proposition 2.1, and assume in addition that

there exists ξ ∈ t such that α(ξ) = −1 for each α ∈ Φ(Tx). Then

H(Y, x)(t) = evξ char(GrOY,x) =
evξ i

∗[OY ]

(1− t)d
,

where d = dimX.

Proof. Let z1, . . . , zq be a basis for m/m2 ⊆ (TxX)∗, with weights −α1, . . . ,−αq,
αk ∈ Φ(Tx). For j = (j1, . . . , ji) a sequence of integers between 1 and q, define

zj = zj1 · · · zji ∈ mi/mi+1, and let µj = −αj1−· · ·−αji , the weight of zj. Let Bi be a col-

lection of zj’s which forms a basis for mi/mi+1. Then char(GrOY,x) =
∑∞

i=0

∑
zj∈Bi e

µj ,

and

evξ char(GrOY,x) =
∞∑
i=0

∑
zj∈Bi

tµj(ξ) =

∞∑
i=0

∑
zj∈Bi

ti = H(Y, x)(t).

�

2.2. Equivariant K-theory of flag varieties. In this section we recall some back-

ground about equivariant K-theory and flag varieties. Let G be a complex semisimple

algebraic group, B a Borel subgroup of G, and T a maximal torus in B. Let P ⊃ B

be a parabolic subgroup of G. Let g, b, t and p denote the Lie algebras of these groups.

Given a representation V of T , let Φ(V ) ⊂ t∗ denote the set of weights of V . Let

Φ = Φ(g) denote the set of roots of g with respect to t, and let Φ+ denote the set of

positive roots, chosen so that the positive root spaces are in b, i.e. , so that Φ+ = Φ(b).

The set of negative roots is Φ− = −Φ+. Let L be a Levi subgroup of P containing T ,

and let Φl = Φ(l), and Φ+
l = Φl∩Φ+, Φ−l = Φl∩Φ−. Let B− denote the opposite Borel

subgroup to B and b− its Lie algebra. Let W = NG(T )/T denote the Weyl group;

we will often use the same letter to denote an element of W and a representative in

NG(T ). Let S denote the set of simple reflections in W , so (W,S) is a Coxeter system.

Let WP = WL denote the Weyl group of L. Then WP is a subgroup of W . Each coset

wWP in W contains a unique minimal length element and we let WP denote the set

of minimal length coset representatives in W . The element w is in WP if and only if

w(Φ+
l ) ⊂ Φ+ (cf. [BL00, 2.5.3]).

Let Y = G/B, X = G/P , and let π : Y → X denote the projection. We will need

a formula for the pullback of the class in KT (X) of the structure sheaf of a Schubert

variety to a fixed point. We explain how to obtain this formula from the known formula

for the corresponding problem on Y . If w ∈ W , we define the Schubert varieties

Xw = B− · wP ⊂ X and Y w = B− · wB ⊂ Y . The variety Xw only depends on the

coset wWP , and if we take w ∈ WP , then codimXw = l(w). Since π is a flat map,

it induces a map π∗ : KT (X) → KT (Y ) satisfying π∗[OXw ] = [Oπ−1(Xw)] = [OY w ]. If

v ∈ WP , let iv : {pt} → X (resp. jv : {pt} → Y ) denote the map taking the point

to vP (resp. vB). Because X and Y are smooth, there are induced pullback maps
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i∗v : KT (X)→ R(T ) and j∗v : KT (Y )→ R(T ). As iv = π ◦ jv, we have i∗v = j∗v ◦ π∗, and

therefore

i∗v[OXw ] = j∗vπ
∗[OXw ] = j∗v [OY w ].

There is a general formula for i∗v[OXw ]. To state it we need to define the 0-Hecke

algebra associated to the Coxeter system (W,S), over the ring R. This algebra is a

free R-algebra with basis Hw, for w ∈ W , and the multiplication is characterized by

the following relations: H1 is the identity element (here 1 denotes the identity element

of W ); for s ∈ S, w ∈ W , we have HsHw = Hsw if l(sw) > l(w), HsHw = Hw if

l(sw) < l(w), and H2
s = Hs.

Remark 2.3. The term 0-Hecke algebra has been used (see, for example, [Car86],

[Fay05]) for the algebra with basis Jw (for w ∈ W ), characterized by the proper-

ties JsJw = Jsw if l(sw) > l(w), JsJw = Jw if l(sw) < l(w), and J2
s = −Js (and the

formula in [Gra02] is given in terms of this algebra). If we set Hs = −Js, we see that

this algebra is the same as the algebra defined above, and we can translate between

the two presentations, since

Js1Js2 . . . Jsk = (−1)l(u)−kJu ⇔ Hs1Hs2 . . . Hsk = Hu.

In the case of equivariant cohomology, the appropriate algebra is one in which the

relations J2
s = −Js are replaced by relations of the form T 2

s = 0. This algebra has been

called the nil-Coxeter algebra or the nil-Hecke ring or algebra (see for example [FS94],

[KK86], [Gin98]).

Definition 2.4. Let s = (s1, s2, . . . , sl) be a sequence of simple reflections. Define

T (w, s) to be the set of subsequences t = (si1 , . . . , sim), 1 ≤ i1 < · · · < im ≤ l such

that Hsi1
Hsi2

· · ·Hsim = Hw. Define l(t) = m, and define e(t) = l(t)− l(w).

Remark 2.5. In the above definition of T (w, s), if (i1, . . . , im) and (j1, . . . , jm) are

different subsequences of (1, . . . , l), then we regard (si1 , . . . , sim) and (sj1 , . . . , sjm) as

different subsequences of s, even if they have the same entries.

We can now state the restriction formula.

Theorem 2.6. Let v, w ∈WP . Fix a reduced expression s = (s1, . . . sl) for v, and for

c = 1, . . . , l, let r(c) = s1s2 · · · sc−1(αc). Then

i∗v[OXw ] = (−1)l(w)
∑

t∈Tw,s

(e−r(i1) − 1)(e−r(i2) − 1) · · · (e−r(im) − 1) (2.1)

=
∑

t∈Tw,s

(−1)e(t)(1− e−r(i1))(1− e−r(i2)) · · · (1− e−r(im)) (2.2)

where Tw,s and e(t) are as in Definition 2.4.

This formula can be deduced from formulas for restrictions to fixed points given by

Graham and Willems (see [Gra02], [Wil06]). (The paper [Wil06] gives formulas for
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restrictions of a different basis than the basis of structure sheaves of Schubert varieties,

but the relationship between bases given in [GK08, Proposition 2.2] allows one to

deduce formulas for the restrictions of one basis from the formulas for another basis.)

See also [Knu08].

Remark 2.7. Observe that {r(1), r(2), . . . , r(l)} ⊂ Φ(Tv(G/P )) (in the notation of The-

orem 2.6). Indeed, the set {r(1), r(2), . . . , r(l)} of Theorem 2.6 is equal to v(Φ−)∩Φ+,

and the set Φ(Tv(G/P )) of weights of Tv(G/P ) is v(Φ(g/p)) = v(Φ− \ Φ−l ). Because

v ∈WP , v(Φ−l ) ⊂ Φ−. Therefore v(Φ−)∩Φ+ ⊂ v(Φ−\Φ−l ), which implies the assertion.

2.3. Cominuscule flag varieties. Let P ⊃ B be a standard parabolic subgroup of

G; let l be a Levi subalgebra of p containing t, and let u denote the nilradical of p, so

we have a Levi decomposition p = l + u. Let u− denote the nilradical of the opposite

parabolic subalgebra to p. If P is maximal, then P corresponds to some simple root

α, in the sense that the simple roots of l are the simple roots of g other than α.

Lemma 2.8. Let α1, . . . , αr denote the simple roots for g and let P denote the maximal

parabolic subgroup corresponding to αi. If α =
∑

k nkαk is a root of g, and ni = 0,

then α is a root of l.

Proof. By replacing α by −α if necessary we may assume each nk ≥ 0 (i.e. α is a

positive root). The proof is by induction on
∑
nk. If

∑
nk = 1 then α is simple and,

as noted above, α is a root of l. Suppose now that the statement of the lemma holds

for all roots β =
∑
mkαk with

∑
mk <

∑
nk. Since (α, α) =

∑
nk(α, αk) > 0, there

exists some j 6= i with (α, αj) > 0. Then β = sαj (α) =
∑
mkαk is a root, necessarily

positive (since the only root which changes sign under sαj is αj 6= β). Moreover,∑
mk =

∑
nk − 2

(α,αj)
(αj ,αj)

<
∑
nk. Our inductive hypothesis implies that β is a root of

l; since the set of roots of l is preserved by sαj , we conclude that sαjβ = α is a root of

l. �

If G is simple, a maximal parabolic subgroup P is called cominuscule if the corre-

sponding simple root α appears with coefficient equal to 1 when the highest root of G

is written as a sum of simple roots. The corresponding generalized flag variety G/P is

also called cominuscule. Cominuscule flag varieties have the following useful property

(which we learned from Michel Brion).

Proposition 2.9. Let G/P be a cominuscule generalized flag variety. For any v ∈WP ,

there exists an element ξ ∈ t (depending on v) such that for any weight α of T on

TvP (G/P ), we have α(ξ) = −1.

Proof. Let α1, . . . , αr denote the simple roots of g; these form a basis of t∗, and we

denote the dual basis of t by ξ1, . . . , ξr. Assume that P corresponds to the simple root

αi. First suppose that v = e is the identity. In this case, we can take ξ = ξi. The
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reason is that as T -representations,

TeP (G/P ) ∼= g/p ∼= ⊕C−α,
where the sum is over the positive roots of g which are not roots of l. If α =

∑
nkαk

is such a root, then ni > 0 by Lemma 2.8; ni ≤ 1 since αi occurs with coefficient 1 in

the highest root of g, so ni = 1, and then −α(ξi) = −ni = −1 as asserted. For general

v ∈WP , we can take ξ = vξi, since the set of weights of TvP (G/P ) is v applied to the

set of weights of TeP (G/P ). �

2.4. Hilbert series and Hilbert polynomials in cominuscule flag varieties.

We can now describe the Hilbert series and Hilbert polynomial of a Schubert va-

riety in a cominuscule generalized flag variety at a T -fixed point. We will write

H(Xw, v)(t) for the Hilbert series H(Xw, vP )(t) and h(Xw, v)(n) for the Hilbert poly-

nomial h(Xw, vP )(n).

Theorem 2.10. Let G/P be a cominuscule generalized flag variety and v, w ∈ WP .

Fix a reduced expression s = (s1, . . . sl) for v. Let d = dimG/P . The Hilbert series

H(Xw, v) is given by

H(Xw, v)(t) =
∑

t∈Tw,s

(−1)e(t)

(1− t)d−l(t)
.

The Hilbert function is equal to the Hilbert polynomial h(Xw, v)(n) for all n, and is

given by the formula

h(Xw, v)(n) =
∑

t∈Tw,s

(−1)e(t)
(
n+ d− l(t)− 1
d− l(t)− 1.

)

Proof. By Proposition 2.9, there exists ξ in t so that α(ξ) = −1 for each weight α of

Tv(G/P ). By Remark 2.7, each r(i) is a weight of Tv(G/P ). Hence evξ(e
−r(i)) = t.

Therefore, Proposition 2.2 and Theorem 2.6 imply

H(Xw, v)(t) =
evξ i

∗
v[OXw ]

(1− t)d
=

evξ
∑

t∈Tw,s(−1)e(t)(1− e−r(i1))(1− e−r(i2)) · · · (1− e−r(im))

(1− t)d

=

∑
t∈Tw,s(−1)e(t)(1− t)m

(1− t)d
=
∑

t∈Tw,s

(−1)e(t)

(1− t)d−l(t)
.

Recalling the identity
1

(1− t)k
=

∞∑
n=0

(
n+ k − 1

k − 1

)
tn, we obtain

H(Xw, v)(t) =
∑

t∈Tw,s

(−1)e(t)
∞∑
n=0

(
n+ d− l(t)− 1

d− l(t)− 1

)
tn

=
∞∑
n=0

 ∑
t∈Tw,s

(−1)e(t)
(
n+ d− l(t)− 1

d− l(t)− 1

) tn.
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Thus

h(Xw, v)(n) =
∑

t∈Tw,s

(−1)e(t)
(
n+ d− l(t)− 1

d− l(t)− 1

)
.

�

We may alternatively index the summations for the Hilbert series and Hilbert poly-

nomial by the nonnegative integers N.

Corollary 2.11. Let G/P be a cominuscule generalized flag variety and v, w ∈ WP ,

v ≥ w. Fix a reduced expression s = (s1, . . . sl) for v. Let dw = dimXw = dimG/P −
l(w). For k ∈ N, define mk = #{t ∈ Tw,s | e(t) = k}. Then

H(Xw, v)(t) =
∑
k∈N

(−1)kmk

(1− t)dw−k

h(Xw, v)(n) =
∑
k∈N

(−1)kmk

(
n+ dw − k − 1

dw − k − 1

)
mult(Xw, v) = m0

Proof. Let d = dimG/P . Note that e(t) = l(t)− l(w), so d− l(t) = (d− l(w))− e(t) =

dw − e(t). Thus

H(Xw, v)(t) =
∑

t∈Tw,s

(−1)e(t)

(1− t)d−l(t)
=
∑

t∈Tw,s

(−1)e(t)

(1− t)dw−e(t)
=
∑
k∈N

(−1)kmk

(1− t)dw−k
.

The formula for the Hilbert polynomial follows similarly. The highest degree term of

h(Xw, v)(n) is m0n
dw−1/(dw − 1)!, implying that mult(Xw, v) = m0. �

The formula for multiplicity in the above corollary can be restated as follows. Let

G/P be a cominuscule generalized flag variety and v, w ∈WP . Fix a reduced expression

(s1, . . . sl) for v. Recall that v ≥ w in the Bruhat order if and only if there exists a

subsequence (i1, . . . , im) of (1, . . . , l) such that (si1 , . . . , sim) is a reduced expression for

w; in this case, mult(Xw, v) is equal to the number of such subsequences.

3. The 0-Hecke algebra and fully commutative elements

This section contains some results about fully commutative elements and the 0-

Hecke algebra which we need to connect the pullback formula of Theorem 2.6 with the

combinatorics of Young diagrams.

Given any q-tuple s = (s1, . . . , sq) of elements of S, let Hs = Hs1Hs2 · · ·Hsq . If

q = 0 we define Hs = H1. Let (s, s) denote the q + 1-tuple (s1, . . . , sq, s), and given a

q′-tuple s = (s′1, . . . , s
′
q′), let (s, s′) = (s1, . . . , sq, s

′
1, . . . , s

′
q′). The length of a q-tuple s

is l(s) = q. If

w = s1s2 · · · sq (3.1)
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and l(w) = l(s) then we will say s is a reduced expression for w. We will also use the

term reduced expression to refer to the equation (3.1).

We begin with some preliminary results.

Lemma 3.1. If Hs = Hw, then l(s) ≥ l(w). If l(s) = l(w), then s is a reduced

expression for w.

Proof. We proceed by induction on l(s). If l(s) = 0 or l(s) = 1 then the lemma is

trivial. Suppose the lemma is true for tuples of length q, and s = (t, sq+1), where

t = (s1, . . . , sq). Then Ht = Hu for u ∈W with l(t) ≥ l(u). Then w equals either u or

usq+1, so

l(s) = l(t) + 1 ≥ l(u) + 1 ≥ l(w).

Now assume that l(s) = l(w), so l(w) = q + 1. Then since l(u) ≤ l(t) = q and l(w)

equals either l(u) or l(u) + 1, we must have that l(u) = q and l(w) = l(u) + 1. Thus

w must equal usq+1. By the inductive hypothesis, u = s1 · · · sq. Therefore w equals

s1 · · · sq+1. �

The right (resp. left) weak order on W is the transitive closure of the relation u <R us

(resp. u <L su) for u ∈W , s ∈ S with l(u) < l(us) (resp. l(u) < l(su)). Given a reduced

expression w = s1 · · · sq, for any k < q, we have s1 . . . sk <R w, and for any k > 1, we

have sksk+1 · · · sq <L w. We can extend these results to the Hecke algebra; we only

state the version using <R.

Proposition 3.2. Suppose that s = (s1, . . . , sq) and Hs = Hw. Suppose that k ≤ q

and t = (s1, . . . , sk) is a reduced expression for u = s1 · · · sk. Then u ≤R w.

Proof. Let r = (sk+1, . . . , sq), so s = (t, r). It suffices to show that there is a subse-

quence q of r such that (t,q) is a reduced expression for w. We proceed by induction

on l(s). Lemma 3.1 implies that l(s) ≥ l(w). If l(s) = l(w) we are done. Otherwise,

there is some j ≥ k such that

u < usk+1 < · · ·usk+1 · · · sj > usk+1 · · · sjsj+1.

Let r′ denote the sequence r with sj+1 deleted, and let s′ = (t, r′). Since Hs1 . . . Hsj =

Hs1 . . . HsjHsj+1 , we have Hs′ = Hs. Our inductive hypothesis to s′ implies that there

is a subsequence q of r′ such that (t, r′) is a reduced expression for w. Since q is also

a subsequence of r, the result follows. �

Given two elements s, t ∈ S, let m(s, t) denote the order of st in W . Given any

q-tuple s = (s1, . . . , sq) of elements of S, let s(s, t) denote the sub-tuple of s formed

by the occurrences of s and t. For example, if s = (s, t, u, s, u, s, v, s, t) then s(s, t) =

(s, t, s, s, s, t).

Given w ∈ W of length q, let Vw denote the set of all q-tuples s which are reduced

expressions for w. Form a graph Gw with vertex set Vw, such that s = (s1, . . . , sq), t =
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(t1, . . . , tq) ∈ Vw are joined by an edge if there are elements s, t ∈ S and a sequence of

indices i, i+ 1, i+ 2, . . . , i+m(s, t) such that (si+1, si+2, . . . , si+m(s,t)) = (s, t, . . .) and

(ti+1, ti+2, . . . , ti+m(s,t)) = (t, s, . . .) (we will say that this edge corresponds to the braid

relation between s and t).

An element w ∈ W is called fully commutative if any reduced expression for w can

be obtained from any other by using only the relations st = ts where s and t are

commuting elements of S. Suppose that w is fully commutative and m(s, t) ≥ 3 (that

is, s and t do not commute). Then as observed by Stembridge [Ste96], there is no edge

in the graph corresponding to the braid relation between s and t. Stembridge also

observed that this implies that if s and t are joined by an edge, then s(s, t) = t(s, t),

so since the graph is connected, s(s, t) = t(s, t) for any two elements s and t of Vw.

Write w(s, t) = s(s, t) where s is any element of Vw.

Observe that w(s, t) can have repeated elements. For example, in type B3, if w =

s2s3s2s1 (which is fully commutative), then w(s1, s2) = (s2, s2, s1).

Lemma 3.3. Let w be fully commutative, and let s, t ∈ Vw. Then any s ∈ S occurs

the same number of times in s as in t.

Proof. If two elements of Vw are connected by an edge, then they differ only by the

interchange of two elements of S. Therefore s must occur the same number of times in

both elements. Since the graph Gw is connected, the result follows. �

Proposition 3.4. Suppose s = (s1, . . . , sq) satisfies Hs = Hw, where w is fully com-

mutative, and suppose that q > l = l(w). Then there exist i < j such that si = sj and

si commutes with sk for every k, i < k < j.

Proof. Since q > l, there is some index j such that

s1 < s1s2 < · · · < s1s2 . . . sj−1 > s1s2 . . . sj−1sj . (3.2)

Let s = sj and u = s1s2 · · · sj−1; then s′ = (s1, . . . , sj−1) is a reduced expression for u.

By Proposition 3.2, u ≤R w, so u is fully commutative (see [Ste96]). Because us < s,

there is a reduced expression for u which ends in s. Therefore any reduced expression

for u must have at least one term equal to s. In particular this holds for the reduced

expression s′. Let i be the largest integer with 1 ≤ i ≤ j − 1 satisfying si = s. It

suffices to show that sk commutes with s for all k with i < k < j. Suppose this fails;

then t = sk does not commute with s for some k with i < k < j. We have chosen i

so that s is not an element of the set {sk+1, sk+2, . . . , sj−1}. Therefore u(s, t) = s′(s, t)

ends in t. On the other hand, u(s, t) = s since u has a reduced expression ending in s.

This is a contradiction. We conclude that sk commutes with s for all k with i < k < j,

as desired. �
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4. Applications to the Grassmannian

Let G be SLn(C), Pd the maximal parabolic subgroup of G corresponding to the

simple root αd, B
− the Borel subgroup of lower triangular matrices in G, and T the

group of diagonal matrices in G. The Weyl group W = NG(T )/T is isomorphic to Sn,

the permutation group on n elements. The Weyl group WPd of Pd is isomorphic to

Sd×Sn−d, and the set WPd of minimal length coset representatives of W/WPd consists

of the permutations w = (w1, . . . , wn) such that w1 < · · · < wd and wd+1 < · · · < wn.

The coset space G/Pd is identified with Grass(d, n), the Grassmannian variety of d-

dimensional complex subspaces of Cn. It is an irreducible projective variety of complex

dimension d(n − d). The cosets wPd, w ∈ WPd , are precisely the T -fixed points of

G/Pd. By abuse of notation, we often denote wPd by w. The Schubert variety Xw is

by definition B−wPd ⊆ G/Pd. It is an irreducible projective variety of codimension

l(w). For v, w ∈WPd , v ∈ Xw if and only if v ≥ w in the Bruhat order.

In this section, we give formulas for i∗v[OXw ] (Theorems 4.5 and 4.15), as well as the

Hilbert series, Hilbert polynomial, and multiplicity of Xw at v (Section 4.4). These are

reformulations of Theorem 2.6 and Corollary 2.11, expressed in terms of indexing sets

which are specific to the combinatorics of the the symmetric group and the Grassman-

nian. Namely, our indexing sets are excited Young diagrams and set-valued tableaux.

The term excited Young diagram is due to Ikeda and Naruse [IN09]; in [Kre05] this is

called a subset of a Young diagram. In this paper we have modified the definition of

excited Young diagram for our applications to K-theory; the earlier definition corre-

sponds to our reduced excited Young diagram. Reduced excited Young diagrams were

discovered independently by Kreiman [Kre05] and Ikeda and Naruse [IN09]. A related

version of excited Young diagram introduced in [IN11] is discussed in Section 5.4.

Our formula for i∗v[OXw ], expressed in terms of set-valued tableaux, was obtained in

[Kre05]. The derivation of the formula there relies on an equivariant Gröbner degenera-

tion of Xw in a neighborhood of v to a union of coordinate subspaces; this degeneration

is due to [KR03], [Kre03], [KL04], and [Kre08]. In [Kre05], computing i∗v[OXw ] involves

cataloging the weights of the intersections of these coordinate subspaces. Each co-

ordinate subspace is expressed as V (mT ), where mT is a monomial indexed by the

entries of a Young tableau T . The intersection V (mT1)∩ · · · ∩ V (mTk) is then equal to

V (mT1 , . . . ,mTk) = V (mT1∪···∪Tk), where T1 ∪ · · · ∪ Tk is the set-valued tableau whose

entry in each box is equal to the union of the entries of T1, . . . , Tk in the same box. In

this way set-valued tableaux arise naturally from this approach.

Our approach is different. In both this section and the next one, our methods are

modeled on those of Ikeda and Naruse [IN09]. We generalize their arguments from

reduced excited Young diagrams to excited Young diagrams, and correspondingly from

nil-Coxeter algebras to 0-Hecke algebras. In several places, we use their results directly.
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Whereas set-valued tableaux are more suitable for the methods used in [Kre05], excited

Young diagrams are more suitable for the methods used here.

4.1. Permutations, partitions, and Young diagrams. A partition is a sequence

of integers λ = (λ1, . . . , λd) such that λ1 ≥ · · · ≥ λd ≥ 0. Let Pd,n−d denote the set of

partitions such that λ1 ≤ n − d. A Young diagram is a set of boxes arranged in a

left justified array, such that the row lengths weakly decrease from top to bottom. To

any partition λ we associate the Young diagram Dλ whose i-th row contains λi boxes.

Example 4.1. Let d = 5, n = 11, and λ = (4, 4, 2, 1) ∈ Pd,n−d. The Young diagram Dλ

fits inside a d× (n− d) rectangle.

The map WPd → Pd,n given by v 7→ λv, where

(λv)i = vd+1−i − (d+ 1− i), i = 1, . . . , d, (4.1)

is a bijection. Thus WPd , Pd,n, and the set of Young diagrams which fit inside a

d × (n − d) rectangle can all be identified; each parametrizes the T -fixed points of

G/Pd. We now record several properties of these sets and relationships among them.

An inversion of a permutation v = {v1, . . . , vn} ∈ Sn is a pair (i, j) for which

i < j and vi > vj . The number of inversions of v equals l(v).

Assume that v ∈ WPd . If (i, j) is an inversion, then i ∈ {1, . . . , d} and j ∈ {d +

1, . . . , n}. For i ∈ {1, . . . , d} and j ∈ {d+1, . . . , n}, define li(v) = #{k ∈ {d+1, . . . , n} |
vi > vk} and lj(v) = #{k ∈ {1, . . . , d} | vk > vj}. Then

li(v) = vi − i, lj(v) = j − vj , (4.2)

and

l(v) =

d∑
i=1

li(v) =

n∑
j=d+1

lj(v). (4.3)

Equations (4.1) and (4.2) imply

(λv)i = ld+1−i(v). (4.4)

The length |λ| of a partition λ is defined to be λ1 + · · ·+ λd.

Lemma 4.2. For v ∈WPd, |λv| = l(v).

Proof. By (4.4) and (4.3), |λv| =
∑d

i=1(λv)i =
∑d

i=1 ld+1−i(v) =
∑d

i=1 li(v) = l(v). �
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For λ ∈ Pd,n, define the partition λt = (λt1, . . . , λ
t
n−d) ∈ Pn−d,n by λtj = #{i ∈

{1, . . . , d} | λi ≥ j}, j = 1, . . . , n − d. Then λtj is the number of boxes in the j-th

column of Dλ. We call λt the transpose of λ.

Lemma 4.3. For v ∈WPd, (λv)
t
j = (d+ j)− vd+j, j = 1, . . . , n− d.

Proof. (λv)
t
j = #{i ∈ {1, . . . , d} | (λv)i ≥ j} = #{i ∈ {1, . . . , d} | ld+1−i(v) ≥ j} =

#{i ∈ {1, . . . , d} | li(v) ≥ j} = #{i ∈ {1, . . . , d} | vi > vd+j} = ld+j(v) = (d + j) −
vd+j . �

The following lemma will be needed in Section 5. We say that a partition λ is

symmetric if λt = λ, and that a Young diagram is symmetric if the length of column

j equals the length of row j for all j. Clearly λ is symmetric if and only if Dλ is

symmetric. We say that a permutation v = (v1, . . . , v2n) is symmetric if vı = vi,

i = 1, . . . , n, where x = 2n+ 1− x.

Lemma 4.4. The permutation v = (v1, . . . , v2n) ∈WPn is symmetric if and only if λv
is symmetric.

Proof. We have

vı = vi, i = 1, . . . , n ⇐⇒ vı + vi = 2n+ 1, i = 1, . . . , n

⇐⇒ vn+j + vn+1−j = 2n+ 1, j = 1, . . . , n

⇐⇒ (n+ j)− vn+j = vn+1−j − (n+ 1− j), j = 1, . . . , n

⇐⇒ (λv)
t
j = (λv)j , j = 1, . . . , n

�

4.2. Restriction formula in terms of excited Young diagrams. Our convention

is to number the rows of a Young diagram from top to bottom and the columns from

left to right. The box in row i and column j is denoted by (i, j).

Suppose that C is any subset of Dλ, (i, j) ∈ C, and (i+1, j), (i, j+1), (i+1, j+1) ∈
Dλ \ C. Define an excitation of type 1 to be an operation which replaces C by

C ′ = C \ (i, j) ∪ (i+ 1, j + 1), and denote such an operation by C C ′. Define an

excitation of type 2 to be an operation which replaces C by C ′′ = C ∪ (i+ 1, j + 1),

and denote such an operation by C C ′′.

Let λ, µ ∈ Id,n. If λi ≤ µi, i = 1, . . . , d, then the map (i, j) 7→ (i, j) embeds Dλ as

a subset of Dµ. An excited Young diagram of Dλ in Dµ is defined to be a subset

of Dµ which can be obtained by applying a sequence of excitations to the subset Dλ.

An excited Young diagram is said to be reduced if it can be obtained from Dλ by

applying only type 1 excitations. Denote the set of excited Young diagrams of Dλ in

Dµ by Eλ(µ), and the set of reduced excited Young diagrams by Ered
λ (µ) (see Figure 2).
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Figure 1. The Young diagram Dλ, λ = (5, 5, 4, 3), appears on the
left. The five shaded boxes of Dλ form a subset C of Dλ. The top arrow
is the type 1 excitation C C \ (3, 1)∪ (4, 2). The next arrow is the
type 2 excitation C C ∪ (4, 2). The two other excitations which
can be applied to C are also shown.

Theorem 4.5. Let w ≤ v ∈ WPd, and let λ = λw, µ = λv be the corresponding

partitions. Then i∗v[OXw ] = (−1)l(w)
∑

C∈Eλ(µ)

∏
(i,j)∈C

(
eεvd+1−i−εvd+j − 1

)
Example 4.6. Let n = 7, d = 3. For v = {4, 6, 7, 1, 2, 3, 5}, w = {1, 3, 5, 2, 4, 6, 7} ∈WPd ,

µ = λv = (4, 4, 3) and λ = λw = (2, 1). Thus l(w) = |λw| = 3. The set of excited

Young diagrams Eλ(µ) appears in Figure 2. For any C ∈ Eλ(µ) and (i, j) ∈ C, a simple

method of finding the indices vd+j and vd+1−i of Theorem 4.5 is to label the rows and

columns of C with the entries of v as indicated below. Then vd+1−i and vd+j are the

row i and column j labels respectively. For example, for

C =

4

6

7

1 2 3 5

∈ Eλw(λv),

we have
∏

(i,j)∈C

(
eεvd+1−i−εvd+j − 1

)
= (eε7−ε1 − 1) (eε7−ε2 − 1) (eε4−ε2 − 1) .

By Theorem 4.5,

i∗v[OXw ] = −
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε6−ε1 − 1

)
−
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε4−ε2 − 1

)
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Figure 2. The excited Young diagrams Eλ(µ), for µ = (4, 4, 2), λ =
(2, 1). The excited Young diagrams enclosed by the dashed line comprise
Ered
λ (µ).

−
(
eε7−ε1 − 1

) (
eε6−ε1 − 1

) (
eε6−ε3 − 1

)
−
(
eε7−ε1 − 1

) (
eε4−ε2 − 1

) (
eε6−ε3 − 1

)
−
(
eε6−ε2 − 1

) (
eε4−ε2 − 1

) (
eε6−ε3 − 1

)
−
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε6−ε3 − 1

) (
eε6−ε1 − 1

)
−
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε6−ε1 − 1

) (
eε4−ε2 − 1

)
−
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε4−ε2 − 1

) (
eε6−ε3 − 1

)
−
(
eε7−ε1 − 1

) (
eε6−ε1 − 1

) (
eε4−ε2 − 1

) (
eε6−ε3 − 1

)
−
(
eε7−ε1 − 1

) (
eε6−ε2 − 1

) (
eε4−ε2 − 1

) (
eε6−ε3 − 1

)
−
(
eε7−ε1 − 1

) (
eε7−ε2 − 1

) (
eε6−ε1 − 1

) (
eε6−ε3 − 1

) (
eε4−ε2 − 1

)
.

Theorem 4.5 is a reformulation of Theorem 2.6, in which the indexing set T (w, s)

and integer r(c) of the latter theorem are replaced by expressions involving excited

Young diagrams. These replacements are given in Proposition 4.8.

Let w, v ∈WPd , and let λ = λw and µ = λv be the corresponding partitions. Fill in

each box (i, j) of Dµ with the simple reflection sd+j−i, thus obtaining a reflection-valued

tableau denoted by Tµ. Then v = si1si2 · · · sil , where si1 , si2 , . . . , sil are the entries of

Tµ read from right to left, beginning with the bottom row, then the next row up, etc.

Since l = |Dµ| = |µ| = l(v), this decomposition is reduced. To any subset C ⊆ Dµ,

form the subsequence sC = (sj1 , . . . , sjq) of (si1 , . . . , sil) whose entries lie in the set C
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of boxes of Tµ. If C and D are different subsets of Dµ, then we regard sC and sD as

different subsequences of (si1 , . . . , sil), even if they have the same entries.

Example 4.7. Let n = 8, d = 4. For v = {3, 5, 6, 8, 1, 2, 4, 7} ∈ WPd , µ = λv =

(4, 3, 3, 2),

Tµ =

s4 s5 s6 s7

s3 s4 s5

s2 s3 s4

s1 s2

and s2s1s4s3s2s5s4s3s7s6s5s4 is a reduced decomposition for v. For

C = ⊂ Dµ,

we have sC = (s4, s2, s4, s3, s7).

Proposition 4.8. Denote the reduced decomposition (si1 , · · · , sil) for v obtained above

by sv. By definition, T (w, sv) = {sC | C ⊆ Dµ, HsC = Hw}. We have

(i) T (w, sv) = {sC | C ∈ Eλ(µ)}.
(ii) Let (i, j) be the box of Tµ containing sic. Then r(c) = εvd+j − εvd+1−i.

The reduced decomposition sv can be deduced from a more general method of pro-

ducing reduced decompositions of arbitrary permutations (see [Man01, Remark 2.1.9]).

The decomposition here also appears in Ikeda and Naruse [IN09]. Proposition 4.8(ii)

is due to Ikeda and Naruse [IN09]. A version of Proposition 4.8(i) which involves the

nil-Coxeter alegra and (what we call) reduced excited Young diagrams is also proved

in [IN09].

For (co)Grassmannian permutations w and v, the notion of a pipe dream for w on

D(v), introduced by Woo and Yong [WY12] (see also [LY12]), is closely related to that

of an excited Young diagram of Dλ in Dµ. In our language, a pipe dream for w on

D(v) is equal to a subset C of Dµ such that HsC = Hw. By Proposition 4.8(i), the set

of all such pipe dreams is equal to Eλ(µ). General pipe dreams have been studied by

[BB93], [FK96], [KM04], [KM05]. The excited Young diagrams introduced in [IN11]

are also related to those of this paper (see Section 5.4).

4.2.1. Proof of Proposition 4.8(i). Let C be a subset of Dµ. Proposition 4.8(i) is

equivalent to

HsC = Hw if and only if C ∈ Eλ(µ). (4.5)

The proof of the reverse implication is fairly straightforward (see Lemma 4.13). The

proof of the forward implication (Lemma 4.14) is by induction on e1(C) and e2(C),

defined below. Lemma 4.10 helps us to translate from excited Young diagrams to

0-Hecke algebras.
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Definition 4.9. If HsC = Hw, then define

(i) |C| = number of boxes of C

(ii) e1(C) = (1/2)(
∑

(i,j)∈C(i+ j)−
∑

(i,j)∈Dλ(i+ j))

(iii) e2(C) = |C| − |Dλ| = |C| − |λ|

We call e1(C) and e2(C) the type 1 energy and type 2 energy of C respectively.

Lemma 4.10. If HsC = Hw, then

(i) |C| = l(sC).

(ii) e2(C) = e(sC).

(iii) e2(C) ≥ 0, and e2(C) = 0 if and only if sC is a reduced expression for w.

Proof. (i) Clear from the definition of sC .

(ii) e2(C) = |C| − |λ| = l(sC) − l(w) = e(sC), where the last equality is the definition

of e(sC).

(iii) By (ii), this can be restated: If HsC = Hw, then l(sC)−l(w) ≥ 0, and l(sC)−l(w) =

0 if and only if sC is a reduced expression for w. This follows immediately from Lemma

3.1. �

Remark 4.11. If C ∈ Eλ(µ), then one can give interpretations of e1(C) and e2(C) in

terms of excitations; these interpretations are not required for the sequel. An excitation

of type 1 applied to C does not alter |C|, whereas an excitation of type 2 increases

it by 1. Thus e2(C) is the number of excitations of type 2 which must be applied in

order to obtain C from Dλ. In particular, e2(C) ≥ 0, and e2(C) = 0 if and only if

C is reduced. In general, the number of type 1 excitations which must be applied in

order to obtain C from Dλ is not defined, since it may be possible to obtain C by two

different sequences of excitations which have a different number of type 1 excitations.

However, if C is reduced, then this number is defined and is given by e1(C).

Diagonal k of Dλ is defined to be the set of boxes (i, j) such that j − i = k. We

say that box (i, j) lies on diagonal k if j − i = k. Impose the following total order

on the boxes of Dµ: (i, j) < (k, l) if i > k or if i = k and j > l.

Lemma 4.12. Let α′ < α be two boxes of Dµ which lie on the same diagonal k.

Suppose that α ∈ C, α′ 6∈ C, and that C contains no box β, α′ < β < α, which lies on

diagonal k − 1, k, or k + 1. Then HsC \α∪α′ = HsC ∪α′ = HsC .

Proof. Boxes α′ and α of Tµ contain the same reflection, namely sk+d; let r = k + d.

To create sC \α∪α′ from sC , one moves the reflection sr of sC which lies in box α of C

past all of the reflections of sC which lie in boxes β of C, α′ < β < α. Since all such

reflections lie outside of diagonals k − 1, k, and k + 1, sr commutes with them. Thus

HsC \α∪α′ = HsC . One proves HsC ∪α′ = HsC similarly. �
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C =

α

α′

Figure 3. C contains box α but does not contain any of the red boxes.

Lemma 4.13. If C ∈ Eλ(µ), then HsC = Hw.

Proof. Since C is obtained by applying a sequence of excitations toDλ, andHw = HsDλ
,

we need only prove that applying a single excitation to a subset D of Dµ does not alter

HsD . This is a special case of Lemma 4.12. �

Lemma 4.14. If HsC = Hw, then C ∈ Eλ(µ).

Proof. We prove this lemma for the following three cases, which increase in generality:

first when e2(C) = 0 and e1(C) = 0, then when e2(C) = 0 and e1(C) is arbitrary, and

finally with no restrictions on C. Each serves as the base case of an inductive proof for

the subsequent more general case.

Case 1. e2(C) = 0 and e1(C) = 0.

Since e2(C) = 0, sC is a reduced expression for w by Lemma 4.10(iii). Thus, by

Lemma 3.3, any reflection must occur the same number of times in sC as in sDλ . Thus

on each diagonal, C must have the same number of boxes as Dλ does. Since e1(C) = 0,

C = Dλ.

Case 2. e2(C) = 0 and e1(C) arbitrary.

The proof is by induction on e1(C). If e1(C) = 0, then we are done, by Case 1.

Assume that e1(C) > 0. Then C 6= Dλ. Since e2(C) = 0, sC is a reduced expression

for w and therefore C must have the same number of boxes as Dλ does. Thus there must

be some box which is contained in Dλ but not in C. Let α be the maximal such, and let

k be the diagonal of α. As in Case 1, on each diagonal, C must have the same number

of boxes as Dλ does. This implies that C must contain a box lying on diagonal k and

in a lower row than α; let α′ be the maximal such. By maximality of α′, C contains

no box β, α′ < β < α, which lies on diagonal k. Since sC(sk, sk−1) = sDλ(sk, sk−1)

(see Section 3), C contains no box β, α′ < β < α, which lies on diagonal k − 1. Since
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sC(sk, sk+1) = sDλ(sk, sk+1), C contains no box β, α′ < β < α, which lies on diagonal

k + 1.

Dλ =

α

C =
α′

Figure 4. Dλ contains the green boxes. C contains the green boxes
but not the red boxes.

Let A = C\α′∪α. By Lemma 4.12, HsA = HsC = Hw. Furthermore, e1(A) < e1(C).

By induction, A ∈ Eλ(µ). Since C is obtained by applying (type 1) excitations to A,

C ∈ Eλ(µ).

Case 3. No restrictions on C.

The proof is by induction on e2(C). If e2(C) = 0, then we are done, by Case 2.

Assume that e2(C) > 0. Write sC = (sj1 , . . . , sjq). Since e2(C) > 0, q > l(w) by

Lemma 4.10(iii). By assumption HsC = Hw. Proposition 3.4 implies that there exist

a < b such that ja = jb and sja commutes with sjc for every c, a < c < b. Let α′ and

α be the boxes of C containing sja and sjb respectively, and let k be the diagonal of α

and α′. Then C contains no box β, α′ < β < α, which lies on diagonal k−1, k, or k+1.

Let A = C \ α′. By Lemma 4.12, HsA = HsC = Hw. Furthermore, e2(A) < e2(C). By

C =

α

α′

Figure 5. C contains boxes α and α′ but contains none of the red boxes.

induction, A ∈ Eλ(µ). Since C can be obtained by applying (type 2) excitations to A,

C ∈ Eλ(µ). �
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4.2.2. Proof of Proposition 4.8(ii). By (4.1) and Lemma 4.3, there are vd+1−i−(d+1−i)
boxes in row i and (d + j) − vd+j boxes in column j of Dλv . Recall that the entry of

box (l,m) of Tµ is sd+m−l. Thus the entry of the rightmost box of row i of Tµ is

sd+(vd+1−i−(d+1−i))−i = svd+1−i−1, and the entry of the bottom box of column j is

sd+j−((d+j)−vd+j) = svd+j . Figure 6 shows some of the entries of Tµ: sx and sy are the

reflections in the rightmost box of row i and lowest box of column j respectively. Thus

x = vd+1−i − 1, y = vd+j . Also, p = d+ j − i.

Tµ =

sp+1 sp+2 sp+3 sx

sp−2 sp−1 sp sp+1 sp+2 sx−1

sp−3 sp−2 sp−1 sp sp+1

sy−1 sy sy+1 sy+2

j

i · · ·

...

Figure 6. Some reflections involved in computing r(c)

In the expression r(c) = si1si2 · · · sic−1(αic) = si1si2 · · · sp+1(εp−εp+1), the reflections

sij which lie outside darkly shaded boxes in Figure 6 can be removed. Thus

r(c) = sy · · · sp−2sp−1sx · · · sp+2sp+1(εp − εp+1)

= sy · · · sp−2sp−1sx · · · sp+2(εp − εp+2)

= sy · · · sp−2sp−1sx · · · (εp − εp+3)

= sy · · · sp−2sp−1(εp − εx+1)

= sy · · · sp−2(εp−1 − εx+1)

= sy · · · (εp−2 − εx+1)

= εy − εx+1 = εvd+j − εvd+1−i .

4.3. Restriction formula in terms of set-valued tableaux. Let λ be a partition.

A set-valued filling of Dλ is a function T which assigns to each box (i, j) of Dλ a

nonempty subset T (i, j) of {1, . . . , d}. We call λ the shape of T . We call (i, j) a box

of T , and refer to an element of T (i, j) as an entry of box (i, j) of T , or just an entry

of T . A set-valued filling T in which each entry of box (i, j) of T is less than or equal

to each entry of box (i, j + 1) and strictly less than each entry of box (i+ 1, j) is said
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to be semistandard. A set-valued Young tableau, or just set-valued tableau,

is defined to be a semistandard set-valued filling of Dλ. A Young tableau, or just

tableau, is a set-valued tableau in which each box contains a single entry.

Let µ be a partition. We say that a set-valued tableau is restricted by µ if, for any

box (i, j) ∈ T and any entry x of (i, j),

x+ j − i ≤ µ(x). (4.6)

Denote by Tλ(µ) (resp. T red
λ (µ)) the set of set-valued tableaux (resp. tableaux) of

shape λ which are restricted by µ (see Figure 7).

Theorem 4.15. Let w ≤ v ∈ WPd, and let λ = λw, µ = λv be the corresponding

partitions. Then

i∗v[OXw ] = (−1)l(w)
∑

T∈Tλ(µ)

∏
(i,j)∈T

∏
x∈T (i,j)

(
eεvd+1−x−εvd+x+j−i − 1

)

Theorem 4.15, which appeared in [Kre05], is essentially the same statement as Theo-

rem 4.5, except that the indexing set Eλ(µ) has been replaced by Tλ(µ). Equation (4.7)

below defines a map f between these indexing sets, and Proposition 4.22 establishes

that f is a bijection. A similar and related bijection appears in [KMY09]. The map

f restricts to a bijection between Ered
λ (µ) and T red

λ (µ), which was given in [Kre05] and

[WY12], and is closely related to a bijection in [Kog00]. A bijection between Ered
λ (µ) and

the nonintersecting lattice paths of [Kra01], [Kra05], [KR03], [Kre03], [KL04], [Kre08]

was given by [Kre05].

Set-valued tableaux of shape λ restricted by µ were introduced in [Kre05]. They also

appeared in [WY12], where they were identified as special types of flagged set-valued

tableaux. General flagged set-valued tableaux, which were introduced in [KMY09], are

set-valued tableaux whose entries in row i are less than or equal to the i-th coordinate

of a fixed vector b, which is called the flag. The specific flags utilized in [KMY09] are

similar to ours. However, whereas their flags depend on one vexillary permutation,

ours depend on two Grassmannian permutations, namely w and v. We point out that

[WY12] applies more generally to covexillary permutations.

One difference between set-valued tableaux and excited Young diagrams is that the

former are defined locally, whereas the latter are not. One can determine whether a

set-valued tableau T of shape λ lies in Tλ(µ) by checking whether its entries satisfy

the inequalities (4.6). In particular, one need only look only at T . On the other hand,

according to the definition, in order to determine whether a subset C of Dλ lies in Eλ(µ),

one must search for a sequence of excitations which when applied to Dλ produces C.

One can give a local criterion for membership in Eλ(µ) based on Proposition 4.8(i): C

lies in Eλ(µ) precisely when the product of the reflections of sC equals w. Of course,

checking this requires calculations in the 0-Hecke algebra.
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Example 4.16. Let n = 7, d = 3. For v = {4, 6, 7, 1, 2, 3, 5} and w = {1, 3, 5, 2, 4, 6, 7},
µ = λv = (4, 4, 3) and λ = λw = (2, 1). The set-valued tableaux Tλ(µ) appear in

Figure 7. The expression for i∗v[OXw ] computed using Theorem 4.15 is the same as the

expression computed using Theorem 4.5 in Example 4.6.

4.3.1. Proof of Theorem 4.15. Define f : Tλ(µ)→ {subsets of Dµ} by

f(T ) = {(x, x+ j − i) | (i, j) ∈ T, x ∈ T (i, j)}
= {(x, k\ | (i, k\ ∈ T, x ∈ T (i, k\}

(4.7)

for T ∈ Tλ(µ), where (i, k\ denotes the box in row i, diagonal k of T . To see that every

box of f(T ) lies in Dµ, and thus f is well defined, observe that for every box (i, j) ∈ T
and entry x ∈ T (i, j), 1 ≤ x ≤ d and 1 ≤ x + j − i ≤ µ(x). Indeed, 1 ≤ x ≤ d by

definition. Semistandardness of T forces i ≤ x; hence 1 ≤ x+j−i. The final inequality,

namely x+ j − i ≤ µ(x), is (4.6). As stated above, we prove Theorem 4.15 by showing

that f is in fact a bijection from Tλ(µ) to Eλ(µ) (Proposition 4.22).

We emphasize that T and f(T ) are associated to Young diagrams of different shapes:

T has shape λ, and f(T ) is a subset of Dµ, which has shape µ. The subset f(T ) of

Dµ contains, for each integer x of box (i, j) of T , box (x, x + j − i) of Dµ. We write

f(T |x) = (x, x+ j− i) = (x, j− i\. Observe that f(T |x) lies in the same diagonal as x,

namely j − i, but in row x instead of i. This suggests a more qualitative description of

f . Suppose that the entries of some box α of T are x1, . . . , xk. Corresponding to these

entries, f(T ) will have boxes in Dµ in the same diagonal as α, and rows x1, . . . , xk;

thus the entries of T record the rows of the boxes of f(T ). The inequality (4.6) merely

ensures that the boxes of f(T ) actually lie in Dµ.

In Section 4.2 we defined excitations on subsets of Young diagrams. Here we need

an analogous operation on set-valued tableaux. Let T ∈ Tλ(µ), and suppose that

x ∈ T (i, j), x 6∈ T (i, j+1), x+1 6∈ T (i, j), x+1 6∈ T (i+1, j), (x+1)+ j− i ≤ µ(x+1).

An excitation of type 1 replaces entry x with x+ 1 in box (i, j) of T , and an excitation

of type 2 adds entry x + 1 to box (i, j) of T . Both types of excitations preserve

semistandardness and the property of being restricted by µ. Let T top ∈ Tλ(µ) be

defined by T top(i, j) = {i}, i.e., each box in row i contains the single entry i. Then

f(T top) = Dλ.

Lemma 4.17. Any element T ∈ Tλ(µ) can be obtained by applying a sequence of

excitations to T top.

Proof. For any set-valued tableau T of shape λ, define s(T ) to be the sum of the entries

of T . Then s(T ) ≥ s(T top), and s(T ) = s(T top) if and only if T = T top. We proceed

by induction on s(T ). Assume that s(T ) > s(T top), and thus T 6= T top.

Case 1: At least one box of T contains more than one entry. Choose any such

box. Define T ′ to be the set-valued tableau obtained by removing the second

smallest entry from this box of T .
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1 1

2

1 2

2

1 2

3

2 2

3

1 1

3

1 2

2,3

1,2 2

3

1 1

2,3

1 1,2

3

1 1,2

2

1 1,2

2,3

Figure 7. The set-valued tableaux Tλ(µ), for µ = (4, 4, 2), λ = (2, 1).
The set-valued tableaux enclosed by the dashed line are Young tableaux;
they comprise T red

λ (µ). The entries of each set-valued tableau record the
row numbers of the boxes in the corresponding excited Young diagram
of Figure 2.

Case 2: Every box of T contains exactly one entry. Let (i, j) be the largest box

for which the entries of T and T top do not agree (where we use the order on

boxes introduced in Section 4.2.1). Let T ′ be the tableau obtained from T by

subtracting one from its entry in box (i, j).

In both cases, T ′ ∈ Tλ(µ) and s(T ′) < s(T ). By the induction hypothesis, T ′ can

be obtained by applying a sequence of excitations to T top. Furthermore, T can be

obtained by applying a sequence of excitations to T ′. The result follows. �

Excitations commute with f , as made precise by the following lemma, which follows

from the definitions.

Lemma 4.18. Let T ∈ Tλ(µ), and let C = f(T ). Let x, x < d, be an entry of box (i, j)

of T , and let (a, b) = f(T |x) ∈ C. Then x+1 6∈ T (i+1, j), x 6∈ T (i, j+1), x+1 6∈ T (i, j),

(x+ 1) + j − i ≤ µ(x+ 1) if and only (a+ 1, b) 6∈ C, (a, b+ 1) 6∈ C, (a+ 1, b+ 1) 6∈ C,

(a + 1, b + 1) ∈ Dµ respectively. If all of these conditions are satisfied, let ν be an

excitation of T modifying x, and let µ be the excitation of C of the same type as ν

modifying (a, b). Then f(ν(T )) = µ(f(T )). We say that µ corresponds to ν under f .

Lemma 4.19. The image of f lies in Eλ(µ).
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Proof. Let T ∈ Tλ(µ). Then T = νk · · · ν1(T top) for some excitations ν1, . . . , νk. By

Lemma 4.18, f(T ) = µk · · ·µ1(Dλ) ∈ Eλ(µ), where µ1, . . . µk correspond to ν1, . . . νk
under f . �

Lemma 4.20. The image of f equals Eλ(µ).

Proof. Let C ∈ Eλ(µ). Then C = µk · · ·µ1(Dλ) for some excitations µ1, . . . , µk. We

prove that C ∈ f(Tµ(λ)) by induction on k. For the base case, we use the fact that

λ = f(T top). Let C ′ = µk−1 · · ·µ1(Dλ). The excitation µk modifies some box (a, b) of

C ′. Thus (a + 1, b) 6∈ C, (a, b + 1) 6∈ C, (a + 1, b + 1) 6∈ C, (a + 1, b + 1) ∈ Dµ. By the

induction hypothesis, C ′ = f(T ′) for some T ′ ∈ Tλ(µ). Let x ∈ T ′(i, j) be such that

f(T |x) = (a, b), and let ν be the excitation of the same type as µk modifying x. By

Lemma 4.18, C = µkC
′ = µkf(T ′) = f(νT ′). �

Lemma 4.21. The map f is injective.

Proof. Let C ∈ Eλ(µ). By Lemma 4.20, there exists T ∈ Tλ(µ) such that f(T ) = C.

We give a constructive proof of the uniqueness of T by filling in the boxes of T one

diagonal at a time, beginning with the largest diagonal. As we shall see, there is only

one way to fill in the boxes so that T is semistandard and f(T ) = C.

The largest diagonal r of Dλ contains a single box, namely (1, r\. For each box

(x, r\ of C, place an x in box (1, r\ of T . Now assume that we have filled in each box

in diagonals q + 1, . . . , r of T with a nonempty set of positive integers. Let (x, q\ ∈ C.

In order to satisfy f(T ) = C, we must place an x in some box of diagonal q of T . In

order for T to be semistandard, we must place this x in the unique box (i, q\ of T

such that x is strictly greater than all entries of box (i− 1, q+ 1\ and weakly less than

all entries of box (i, q + 1\. Surjectivity of f guarantees the existence of such a box

(i, q\. Surjectivity of f also ensures that if this procedure is carried out for every box

of diagonal q of C, every box of diagonal q of T will have at least one number placed

inside of it. �

From Lemmas 4.20 and 4.21 we have

Proposition 4.22. The map f is a bijection from Tλ(µ) to Eλ(µ).

4.4. Hilbert series and Hilbert polynomials of points on Schubert varieties.

In type An, all of the maximal parabolic subgroups Pd are cominuscule (cf. [BL00,

9.0.14]). Thus Corollary 2.11 may be used to compute the Hilbert series, Hilbert poly-

nomial, and multiplicity at v of a Schubert variety Xw in the Grassmannian Grass(d, n).

Let λ and µ be the partitions corresponding to w and v respectively. In the present

setting, the constant mk of Corollary 2.11 is equal to the number of excited Young

diagrams C ∈ Eλ(µ) such that the number of boxes of C is k + |λ| (due to Proposition

4.8(i), Definition 4.9(iii), and Lemma 4.10(ii)). In terms of set-valued tableaux, mk is

equal to the number of T ∈ Tλ(µ) with k + |λ| entries.
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Example 4.23. Let n = 7, d = 3, w = {1, 3, 5, 2, 4, 6, 7}, and v = {4, 6, 7, 1, 2, 3, 5},
as in Example 4.6. Then λ = λw = (2, 1), µ = λv = (4, 4, 3), l(w) = |λ| = 3, and

dw = d(n− d)− l(w) = 9. The set of excited Young diagrams Eλ(µ) appears in Figure

2, and the set of set-valued tableaux Tλ(µ) appears in Figure 7. From either of these

figures, one reads off m0 = 5, m1 = 5, and m2 = 1. Hence

H(Xw, v)(t) =
5

(1− t)9
− 5

(1− t)8
+

1

(1− t)7
,

h(Xw, v)(i) = 5

(
i+ 8

8

)
− 5

(
i+ 7

7

)
+

(
i+ 6

6

)
,

mult(Xw, v) = 5.

Several other multiplicity formulas have appeared in the literature: inductive [LW90],

determinantal [RZ01], [WY12], [LY12], and enumerative [Kra01], [KR03] [Kre03], [KL04],

[Kra05], [Kre08]. The inductive formula of Lakshmibai and Weyman, which holds more

generally for minuscule G/P , was used by Rosenthal and Zelevinsky to prove the deter-

minantal formula, which in turn was used by Krattenthaler to prove the enumerative

formula, which counts nonintersecting lattice paths. The formula given above appeared

earlier in [IN09] and [WY12], and it can also be deduced from [Kre05] together with

the multiplicity formulas of [KR03], [Kre03], [KL04].

Formulas for the Hilbert series and Hilbert polynomial of Xw at v were obtained by

[Kra05]. They were derived using an expression for the Hilbert function of Xw at v

given in [KR03], [Kre03], [KL04], and [Kre08]. The formulas given here appeared earlier

in [LY12]. We remark that the formulas of [LY12] apply more generally to covexillary

permutations.

5. Applications to the orthogonal and Lagrangian Grassmannians

In types Bn, Cn, and Dn, let G be SO2n+1(C), Sp2n(C), and SO2n(C) respectively.

Each of these groups G is defined to be the subgroup of a general linear group preserving

a specified nondegenerate symmetric or skew symmetric inner product (see Appendix

A). Let Pn be the maximal parabolic subgroup of G corresponding to simple root αn.

Bn: The coset space G/Pn is identified with the odd orthogonal Grassmannian

OG(n, 2n+1), which parametrizes the maximal (n dimensional) isotropic sub-

spaces of C2n+1. It has the structure of an irreducible projective variety of

dimension n(n+ 1)/2.

Cn: The coset space G/Pn is identified with the Lagrangian Grassmannian

LG(n, 2n), which parametrizes the maximal (n dimensional) isotropic sub-

spaces of C2n. It has the structure of an irreducible projective variety of

dimension n(n+ 1)/2.
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Dn: The coset space G/Pn is identified with the even orthogonal Grassmannian

OG(n, 2n), which parametrizes one of the two components of the maximal (n-

dimensional) isotropic subspaces of C2n. The even orthogonal Grassmannian

has the structure of an irreducible projective variety of dimension n(n− 1)/2.

Let B− be the Borel subgroup of lower triangular matrices in G, and T the sub-

group of diagonal matrices in G. The Weyl group W = NG(T )/T embeds into

{w = (w1, . . . , w2n) ∈ S2n | wı = wi}, where, for x ∈ {1, . . . , 2n}, x = 2n + 1 − x.

In particular, w ∈ W is uniquely determined by w1, . . . , wn. The Weyl group WPn is

isomorphic to Sn, and the set of minimal length coset representatives of W/WPn

is given by

WPn = {(w1, . . . , w2n) ∈W | w1 < · · · < wn} . (5.1)

The cosets wPn, w ∈ WPn , are precisely the T -fixed points of G/Pn. By abuse of

notation, we sometimes denote wPn by just w. The Schubert variety Xw is by definition

B−wPn ⊆ G/Pn. It is an irreducible projective variety of codimension l(w). For

v, w ∈WPn , v ∈ Xw if and only if v ≥ w in the Bruhat order.

In this section, we give formulas for i∗v[OXw ] (Theorems 5.6 and 5.17), as well as the

Hilbert series, Hilbert polynomial, and multiplicity of Xw at v (Section 5.6). These are

reformulations of Theorem 2.6 and Corollary 2.11, expressed in terms of excited shifted

Young diagrams ([Kre06], [IN09]) and set-valued shifted tableaux. The term excited

shifted Young diagram is due to Ikeda and Naruse [IN09]; in [Kre06], in which only the

case G = Sp2n(C) is studied, this is called a subset of a Young diagram. Also, in this

paper we have modified the definition of excited shifted Young diagram for our appli-

cations to K-theory; the earlier definitions correspond to our reduced excited shifted

Young diagrams. Reduced excited Young diagrams were discovered independently by

Kreiman [Kre06] and Ikeda and Naruse [IN09]. A related version of excited shifted

Young diagram was introduced in [IN11] (see Section 5.4).

In type Cn, our formula for i∗v[OXw ], expressed in terms of set-valued shifted tableaux,

was obtained earlier in [Kre06]. The derivation of the formula there relies on an equi-

variant Gröbner degeneration of Xw in a neighborhood of v; this degeneration is due

to [GR06]. Our approach is different. As in Section 4, our methods in this section are

modeled on those of Ikeda and Naruse [IN09], and in several places, we use their results

directly. Formulas for i∗v[OXw ] which were obtained in [IN11] are discussed in Section

5.4.

5.1. Strict partitions and shifted Young diagrams. A partition λ = (λ1, . . . , λn) ∈
Pn,n is said to be strict if λi = λi+1 implies λi = λi+1 = 0. Let SPn denote the set of

such partitions. A shifted Young diagram is an array of boxes arranged such that

the row lengths strictly decrease from top to bottom and the leftmost box of row i lies

in column i. To a strict partition λ we associate the shifted Young diagram D′λ whose
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i-th row contains λi boxes. Then D′λ fits in the upper triangular boxes of an n × n
square.

Example 5.1. Let n = 6, and λ = (5, 4, 2, 1) ∈ SPn. The shifted Young diagram D′λ
fits in the upper triangular boxes of an n× n square.

Define a map WPn → SPn, w 7→ λ′w, as follows. Given w ∈ WPn , form the Young

diagram Dλw . By Lemma 4.4, Dλw is symmetric. In types Bn and Cn, remove all

boxes (i, j) of Dλw such that i > j; in type Dn, remove all boxes (i, j) of Dλw such

that i ≥ j. The resulting shifted Young diagram corresponds to λ′w. More explicitly,

in types Bn and Cn,

(λ′w)i = max{(λw)i − (i− 1), 0}, i = 1, . . . , n, (5.2)

and in type Dn,

(λ′w)i = max{(λw)i − i, 0}, i = 1, . . . , n− 1. (5.3)

As in type An, l(w) = |λ′w|.

Example 5.2. Let n = 6, and w = (1, 4, 6, 5, 3, 2, 2, 3, 5, 6, 4, 1)

= (1, 4, 7, 8, 10, 11, 2, 3, 5, 6, 9, 12) ∈WPn . Then λw = (5, 5, 4, 4, 2) ∈ Pn,n.

Bn, Cn Dn

In types Bn and Cn, λ′w = (5, 4, 2, 1), and in type Dn, λ′w = (4, 3, 1). These are the

strict partitions obtained by removing the unshaded boxes from Dλw in the diagrams

above.

In types Bn and Cn, the map WPn → SPn is a bijection, and in type Dn, the

map WPn → SPn−1 is a bijection. The assertion in type Dn follows from the fact

that both WPn → Q and Q → SPn−1 are bijections, where Q is the set of symmetric

partitions with at most n rows and an even number of boxes of the form (i, i) (i.e.,

lying on diagonal 0). The map WPn → Q, v 7→ λv, is well defined and bijective by

Lemma 4.4 and (A.2). The map Q→ SPn−1, λv 7→ λ′v, is bijective by straightforward

combinatorial arguments. In types Bn and Cn, the proof is similar but simpler.
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Thus WPn in type Dn and WPn−1 in type Bn−1 are both in bijection with SPn−1. We

identify the element of WPn in type Dn with the element of WPn−1 in type Bn−1 which

corresponds to the same strict partition of SPn−1. This in turn gives an identification

between the fixed points of OG(n, 2n) and of OG(n− 1, 2n− 1).

Example 5.3. In typeDn, with n = 6, let w = (1, 4, 6, 5, 3, 2, 2, 3, 5, 6, 4, 1) as in Example

5.2. Then λw = (5, 5, 4, 4, 2) ∈ Pn,n and λ′w = (4, 3, 1) ∈ SPn−1. Let λ = λ′w. In

type Bn−1, λ ∈ SPn−1 corresponds to (4, 4, 3, 2) ∈ Pn−1,n−1, which corresponds to

u = (1, 4, 5, 3, 2, 2, 3, 5, 4, 1) ∈WPn−1 .

Bn−1

Thus we identify the Weyl group element w in type Dn with u in type Bn−1, and we

identify the point w in OG(n, 2n) with u in OG(n− 1, 2n− 1).

Another identification between WPn in type Dn and WPn−1 in type Bn−1 appears

in [RU10, 1.3]. Given w = (w1, . . . , w2n) ∈ WPn in type Dn, merely remove n and n

from the entries w1, . . . , w2n in order to produce element u of Bn−1. (In Example 5.3,

u can be obtained from w by removing 6 and 6 from the entries w1, . . . , w12.) In the

other direction, suppose we are given u = (u1, . . . , u2n−2) ∈WPn−1 in type Bn−1. Add

n and n to the entries of u in such a way that the new permutation is symmetric, and

the first n of its entries have an even number of barred entries and are increasing.

For the remainder of this section, we prove that this identification is the same as

ours. Let λ = (λ1, . . . , λn−1) ∈ SPn−1. Let λ = λ′w for w = (w1, . . . , w2n) ∈ WPn in

type Dn, and let λ = λ′u for u = (u1, . . . , u2n−2) ∈ WPn−1 in type Bn−1. We wish to

show that u is obtained by removing n and n from the entries of w. This is equivalent

to the assertion {w1, . . . , wn} \ {n, n} = {u1, . . . , un−1}.

Lemma 5.4. For 1 ≤ i ≤ n− 1,

Bn−1 : un−i ≥ n− 1 if and only if λi > 0, in which case un−i = n− λi
Dn : wn+1−i ≥ n− 1 if and only if λi > 0, in which case wn+1−i = n− λi

Note that in type Bn−1, x = 2n− 1− x, whereas in type Dn, x = 2n+ 1− x.

Proof. We prove this for type Dn. The proof for type Bn−1 is similar. By (4.1), for

i = 1, . . . , n, (λw)i = wn+1−i − (n+ 1− i). Thus

(λw)i − i = wn+1−i − (n+ 1) = wn+1−i − n. (5.4)
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Thus wn+1−i ≥ n− 1 if and only if wn+1−i > n if and only if (λw)i > i if and only

if λi = (λ′w)i > 0, by (5.3). In this case (λw)i − i = (λ′w)i = λi, so (5.4) implies

wn+1−i = λi + n = n− λi. �

Recall for x = 1, . . . , n, exactly one of x or x occurs among w1, . . . , wn, and for

y = 1, . . . , n−1, exactly one of y or y occurs among u1, . . . , un−1. In particular exactly

one of n or n occurs among w1, . . . , wn. If one excludes this entry, then Lemma 5.4

implies that the barred entries of w1, . . . , wn and of u1, . . . , un−1 are the same, and

hence the unbarred entries must be the same as well. This completes the proof.

5.2. The orthogonal Grassmannians. In this section we show that the restriction

formula in type Bn can be obtained from the restriction formula in type Dn+1.

Let S and T be the set of diagonal matrices in SO2n+2(C) and SO2n+1(C) respec-

tively. The (n + 1)-st diagonal entry of any element of T must be 1, and the map

diag(t1, . . . , t2n+1) 7→ diag(t1, . . . , tn, 1, 1, tn+2, . . . , t2n+1) embeds T as a closed sub-

group of S. Let Y = OG(n + 1, 2n + 2) and X = OG(n, 2n + 1). There is a T -

equivariant isomorphism π : Y → X (cf. [RU10, 1.3]). Hence π∗ : KT (Y )→ KT (X) is

an isomorphism. The sets {T -fixed points of Y }, {T -fixed points of X}, and {S-fixed

points of Y } can be identified. The identification of the first two sets follows from the

T -equivariance of π, and the identification of the last two sets is described in Section

5.1. In fact, these two identifications are the same (cf. [RU10, 1.3]).

If S acts on any scheme M , then there is a natural restriction homomorphism

res : KS(M)→ KT (M) taking the class of an S-equivariant sheaf F to the class of the

same sheaf, but viewed as equivariant with respect to the T action. If w is any S-fixed

point (equivalently, T -fixed point) of Y , then the square and triangle in the diagram

KS(Y ) KT (Y ) KT (X)

KS(w) KT (w)

res π∗

∼

res

i∗w i∗w
i∗w

commute. Let s∗ and t∗ be the duals of the Lie algebras of S and T respectively, with

bases as given in Appendix A. Define f : s∗ → t∗ by εi 7→ εi, i = 1, . . . , n, εn+1 7→ 0.

Then res : KS(w)→ KT (w) is the homomorphism defined by eµ 7→ ef(µ).

The isomorphism π identifies Schubert varieties of Y with Schubert varieties of X

(cf. [RU10, 1.3]). We shall denote a Schubert variety in Y as Y w and π(Y w) as Xw.

Proposition 5.5. Let w denote both a T -fixed point of X and the corresponding S-fixed

point of Y . Then i∗w[Xw] = res(i∗w[Y w]).
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Proof. We have res[Yw] = [Yw], where the first [Yw] lies in KS(Y ) and the second in

KT (Y ). Further, π∗[Xw] = [π−1(Xw)] = [Y w]. Hence res(i∗w[Y w]) = (i∗w ◦ (π∗)−1 ◦
res)[Y w] = i∗w[Xw]. �

5.3. Restriction formula in terms of excited shifted Young diagrams. Suppose

that λ is a strict partition and S is a subset of D′λ. As in type An, an excitation moves

or adds a box to S. Let (i, j) ∈ S. If i < j, then there are two possible excitations based

on (i, j), and these are the same as in type An: if (i+1, j), (i, j+1), (i+1, j+1) ∈ Dλ\S,

then excitation of type 1 replaces S by S \ (i, j) ∪ (i + 1, j + 1), and an excitation of

type 2 replaces S by S ∪ (i + 1, j + 1). If i = j, then the excitations are described as

follows:

Bn, Cn: If (i, i + 1), (i + 1, i + 1) ∈ D′λ \ S, then an excitation of type 1 replaces S by

S\(i, i)∪(i+1, i+1), and an excitation of type 2 replaces S by S∪(i+1, i+1).

Dn: If (i, i+ 1), (i+ 1, i+ 1), (i+ 1, i+ 2), (i+ 2, i+ 2) ∈ D′λ \S, then an excitation

of type 1 replaces S by S \ (i, i) ∪ (i + 2, i + 2), and an excitation of type 2

replaces S by S ∪ (i+ 2, i+ 2).

Let λ, µ ∈ SPn. If λi ≤ µi, i = 1, . . . , n, the map (i, j) 7→ (i, j) embeds D′λ as a

subset of D′µ. An excited shifted Young diagram of D′λ in D′µ is a subset of D′µ
which can be obtained by applying a sequence of excitations to the subset D′λ. An

excited shifted Young diagram is said to be reduced if it can be obtained by applying

only type 1 excitations. Denote the set of excited shifted Young diagrams of D′λ in D′µ
by E ′λ(µ), and the set of reduced excited shifted Young diagrams by E ′red

λ (µ).

Figure 8. The excited shifted Young diagrams E ′λ(µ) in types Bn and

Cn, for n = 4, µ = (4, 2, 1), λ = (2, 1). The dashed line encloses E ′red
λ (µ).

Theorem 5.6. Let w ≤ v ∈WPn, and let λ, µ be the corresponding strict partitions.

Bn : i∗v[OXw ] = (−1)l(w)
∑

C∈E ′λ(µ)

∏
(i,j)∈C

(
e−2−δij (εvn+i+εvn+j ) − 1

)
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Figure 9. The excited shifted Young diagrams E ′λ(µ) in type Dn, for

n = 6, µ = (5, 3, 2, 1), λ = (3, 1). The dashed line encloses E ′red
λ (µ).

Cn : i∗v[OXw ] = (−1)l(w)
∑

C∈E ′λ(µ)

∏
(i,j)∈C

(
e−(εvn+i+εvn+j ) − 1

)
Dn : i∗v[OXw ] = (−1)l(w)

∑
C∈E ′λ(µ)

∏
(i,j)∈C

(
e−(εvn+i+εvn+j+1 ) − 1

)
where for 1 ≤ m ≤ n, εm is defined to equal −εm.

Remark 5.7. We now have two methods for computing i∗v[OXw ] in type Bn. We can

either employ the above formula for type Bn, or we can invoke Proposition 5.5: first

use the formula for type Dn+1 and then set every εn+1 to 0. In general, the two

methods produce different expressions for i∗v[OXw ]. From the combinatorics alone it

is not clear that these two expressions result in the same value. In general, the latter

method is computationally simpler because it involves fewer excited Young diagrams.

We illustrate both methods in the examples.

Example 5.8. Let n = 4. Let v = {2, 4, 3, 1, 1, 3, 4, 2}, w = {1, 2, 4, 3, 3, 4, 2, 1} in type

Cn or Bn. Then λv = (4, 3, 3, 1), µ = λ′v = (4, 2, 1), λw = (2, 2), and λ = λ′w = (2, 1).

Thus l(w) = |λ′w| = 3. The set of excited shifted Young diagrams E ′λ(µ) appears in

Figure 8. For any C ∈ E ′λ(µ) and (i, j) ∈ C, a simple method for finding the indices

vn+i and vn+j appearing in Theorem 5.6 is to label the rows of C, from top to bottom,

as well as the columns, from left to right, with the entries vn+1, vn+2, . . . of v (where x

is replaced by −x). Then vn+i and vn+j are the row i and column j labels respectively.
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For example, for

C =

4

3

1

1 3 4 −2

∈ E ′λ(µ),

in type Bn,∏
(i,j)∈C

(
e−2−δij (εvn+i+εvn+j ) − 1

)
=
(
e−ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−ε4 − 1

)
,

and in type Cn,∏
(i,j)∈C

(
e−(εvn+i+εvn+j ) − 1

)
=
(
e−2ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−2ε4 − 1

)
.

Invoking Theorem 5.6, we obtain, in type Bn,

i∗v[OXw ] =−
(
e−ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−ε3 − 1

)
−
(
e−ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−ε4 − 1

)
−
(
e−ε1 − 1

)(
e−(ε3+ε4) − 1

)(
e−ε4 − 1

)
−
(
e−ε3 − 1

)(
e−(ε3+ε4) − 1

)(
e−ε4 − 1

)
−
(
e−ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−ε3 − 1

)(
e−ε4 − 1

)
−
(
e−ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−(ε3+ε4) − 1

)(
e−ε4 − 1

)
−
(
e−ε1 − 1

)(
e−ε3 − 1

)(
e−(ε3+ε4) − 1

)(
e−ε4 − 1

)
,

and in type Cn,

i∗v[OXw ] =−
(
e−2ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−2ε3 − 1

)
−
(
e−2ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−2ε4 − 1

)
−
(
e−2ε1 − 1

)(
e−(ε3+ε4) − 1

)(
e−2ε4 − 1

)
−
(
e−2ε3 − 1

)(
e−(ε3+ε4) − 1

)(
e−2ε4 − 1

)
−
(
e−2ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−2ε3 − 1

)(
e−2ε4 − 1

)
−
(
e−2ε1 − 1

)(
e−(ε1+ε3) − 1

)(
e−(ε3+ε4) − 1

)(
e−2ε4 − 1

)
−
(
e−2ε1 − 1

)(
e−2ε3 − 1

)(
e−(ε3+ε4) − 1

)(
e−2ε4 − 1

)
.

Example 5.9. Let n = 6. In type Dn, let v = {2, 6, 5, 4, 3, 1, 1, 3, 4, 5, 6, 2} and w =

{1, 2, 4, 6, 5, 3, 3, 5, 6, 4, 2, 1}. Then λv = (6, 5, 5, 5, 4, 1), µ = λ′v = (5, 3, 2, 1), λw =

(4, 3, 2, 1), and λ = λ′w = (3, 1). Thus l(w) = |λ′w| = 4. The set of excited shifted

Young diagrams E ′λ(µ) appears in Figure 9. For any C ∈ E ′λ(µ) and (i, j) ∈ C, a simple

method of finding the indices vn+i and vn+j+1 of Theorem 5.6 is to label the rows of

C, from top to bottom, with the numbers vn+1, vn+2, . . ., and the columns, from left to

right, with the numbers vn+2, vn+3, . . .. For both row and column labels, x is replaced
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by −x. Then vn+i and vn+j+1 are the row i and column j labels respectively. For

example, for

C =

5

4

3

1

3 4 5 −6 −2

∈ E ′λ(µ),

we have∏
(i,j)∈C

(
e−(εvn+i+εvn+j+1 ) − 1

)
=
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε5−ε6) − 1

)
.

By Theorem 5.6,

i∗v[OXw ] =
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε3+ε4) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε3+ε4) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε3+ε5) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε3+ε4) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε3+ε4) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε3+ε4) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε3+ε5) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε5−ε6) − 1

)
+
(
e−(ε1+ε3) − 1

)(
e−(ε1+ε4) − 1

)(
e−(ε1+ε5) − 1

)(
e−(ε3−ε6) − 1

)(
e−(ε3+ε4) − 1

)(
e−(ε5−ε6) − 1

)
Example 5.10. Let n = 5. In type Bn, let v = {2, 5, 4, 3, 1, 1, 3, 4, 5, 2} and w =

{1, 2, 4, 5, 3, 3, 5, 4, 2, 1}. Then v and w are identified with the corresponding elements

of WPn+1 in Example 5.9 (see Section 5.1). By Proposition 5.5, i∗v[OXw ] can be obtained

from the same expression in Example 5.9 by replacing each ε6 by 0.

Theorem 5.6 is a reformulation of Theorem 2.6, in which the indexing set T (w, s)

and integer r(c) of the latter theorem are expressed in terms of excited shifted Young

diagrams. These replacements are described explicitly in Proposition 5.13.

Let w, v ∈ WPn , and let λ = λ′w and µ = λ′v be the corresponding strict partitions.

Form a reflection-valued shifted tableau T ′µ as follows:
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Bn, Cn: Fill each box (i, j) of D′µ with the reflection sn+i−j .

Dn: Fill each box (i, i) of D′µ with sn if i is odd or sn−1 if i is even; fill each box

(i, j), i < j, with sn+i−(j+1).

Then v = si1 · · · sil , where si1 , . . . , sil are the entries of T ′µ read from right to left, begin-

ning with the bottom row, then the next row up, etc. This decomposition is reduced.

To any subset C of D′µ, form the subsequence sC = (sj1 , . . . , sjq) of (si1 , . . . , sil) whose

entries lie in the set C of boxes of T ′µ. If C and D are different subsets of D′µ, then we

regard sC and sD as different subsequences of (si1 , . . . , sil), even if they have the same

entries.

Example 5.11. Let n = 6. For v = {3, 6, 5, 4, 2, 1, 1, 2, 4, 5, 6, 3} ∈WPn in Cn and

v = {3, 6, 5, 4, 2, 1, 7, 1, 2, 4, 5, 6, 3} ∈ WPn in Bn, λv = (6, 6, 5, 5, 4, 2), µ = λ′v =

(6, 5, 3, 2),

T ′µ =

s6 s5 s4 s3 s2 s1

s6 s5 s4 s3 s2

s6 s5 s4

s6 s5

and s5s6s4s5s6s2s3s4s5s6s1s2s3s4s5s6 is a reduced decomposition for v.

Example 5.12. Let n = 7. For v = {3, 6, 7, 5, 4, 2, 1, 1, 2, 4, 5, 7, 6, 3} ∈WPn in Dn,

λv = (7, 7, 6, 6, 4, 4, 2) and µ = λ′v = (6, 5, 3, 2),

T ′µ =

s7 s5 s4 s3 s2 s1

s6 s5 s4 s3 s2

s7 s5 s4

s6 s5

and s5s6s4s5s7s2s3s4s5s6s1s2s3s4s5s7 is a reduced decomposition for v.

Proposition 5.13. Denote the reduced decomposition (si1 , · · · , sil) for v obtained above

by sv. By definition, T (w, sv) = {sC | C ⊆ D′µ, HsC = Hw}. We have

(i) T (w, sv) = {sC | C ∈ E ′λ(µ)}.
(ii) Let (i, j) be the box of T ′µ containing sic. Define εm = −εm for 1 ≤ m ≤ n.

Then

Bn : r(c) = 2−δij (εvn+i+1 + εvn+j+1)

Cn : r(c) = εvn+i + εvn+j

Dn : r(c) = εvn+i + εvn+j+1

The reduced decomposition sv is due to Ikeda and Naruse [IN09]. Proposition 5.13(ii)

is as well, although our expressions for the constants r(c) are different than theirs. A

version of Proposition 5.13(i) which involves the nil-Coxeter algebra and (what we call)

reduced excited Young diagrams is also proved in [IN09].
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Proposition 5.13 is the counterpart for types Bn, Cn, and Dn of Proposition 4.8.

The proof of part (i) carries over with very minor modifications. We omit the details.

We prove part (ii) below.

Definition 5.14. Let C be a subset of Dµ such that HsC = Hw. Define

(i) |C| = number of boxes of C

(ii) Bn, Cn: e1(C) = (1/2)(
∑

(i,j)∈C(i+ j)−
∑

(i,j)∈Dλ(i+ j))

Dn: e1(C) = (1/2)(
∑

(i,j)∈C,i<j(i + j) +
∑

(i,i)∈C i −
∑

(i,j)∈Dλ,i<j(i + j) −∑
(i,i)∈Dλ i)

(iii) e2(C) = |C| − |D′λ| = |C| − |λ|

We call e1(C) and e2(C) the type 1 energy and type 2 energy of C respectively.

5.3.1. Proof of Proposition 5.13(ii). 1. Type Cn. Recall that entry of box (l,m) of

T ′λv is sn+l−m. By (4.1), the rightmost box of row i lies in column vn+1−i− (n+ 1− i);
by Lemma 4.3, the lowest box of column j, assuming that this box lies to the right of

the ‘descending staircase’, lies in row n + j − vn+j . The entries of these two boxes in

T ′µ are sa and sb respectively, where

a = n+ i− (vn+1−i − (n+ 1− i)) = 2n+ 1− vn+1−i = vn+1−i = vn+i. (5.5)

b = n+ ((n+ j)− vn+j)− j = (2n+ 1)− vn+j − 1 = vn+j − 1. (5.6)

We consider three cases: i < j and (j, j) ∈ D′µ, i < j and (j, j) 6∈ D′µ, and i = j.

Case 1. i < j and (j, j) ∈ D′µ. Let sx, sy denote the reflections which lie in the

rightmost box of rows i and j respectively. Figure 10 shows some of the entries of

T ′µ. In the expression r(c) = si1si2 · · · sic−1(αic) = si1si2 · · · sp−2sp−1(εp − εp+1), the

T ′µ =

i

j

αp sp−1 sp−2 sx

sp+2 sp+1 sp sp−1

sp+3 sp+2 sp+1 sp

sn sn−1 sn−2 sy

...

· · ·

· · ·

Figure 10. Type Cn, Case 1
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reflections sij which lie outside of the shaded boxes can be removed. We have

r(c) = sy · · · sn−2sn−1sn · · · sp+2sp+1sx · · · sp−2sp−1(εp − εp+1)

= sy · · · sn−2sn−1sn · · · sp+2sp+1sx · · · sp−2(εp−1 − εp+1)

= sy · · · sn−2sn−1sn · · · sp+2sp+1sx · · · (εp−2 − εp+1)

= sy · · · sn−2sn−1sn · · · sp+2sp+1(εx − εp+1)

= sy · · · sn−2sn−1sn · · · sp+2(εx − εp+2)

= sy · · · sn−2sn−1sn · · · (εx − εp+3)

= sy · · · sn−2sn−1sn(εx − εn)

= sy · · · sn−2sn−1(εx + εn)

= sy · · · sn−2(εx + εn−1)

= sy · · · (εx + εn−2) = εx + εy = εvn+i + εvn+j ,

where the last equality is due to (5.5).

Case 2. i < j and (j, j) 6∈ D′µ. As in the above calculation, reflections lying outside

T ′µ =

i

j

sx

sz

αp

...

· · ·

Figure 11. Type Cn, Case 2

of the shaded region can be removed from the expression r(c) = si1si2 · · · sic−1(αic),

where αic = αp = εp− εp+1. Let sx, sz be the reflections which lie in the rightmost box

of row i and bottom box of column j respectively. One checks that r(c) = εx − εz+1 =

εvn+i − εvn+j = εvn+i + εvn+j , using (5.5) and (5.6).

Case 3: i = j. In this case, r(c) = · · · sx · · · sn−2sn−1(2εn) = 2εx = εvn+i + εvn+i .

2. Type Bn. The Weyl group in typeBn is the same as in type Cn, and the simple roots

other than αn are identical as well. It follows that if i < j, then r(c) is the same value
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computed in type Cn. If i = j, then r(c) = · · · sx · · · sn−2sn−1(εn) = εx = 2−1(εx + εx).

3. Type Dn.

Recall that for each element v ∈ WPn , D′µ = D′λ′v is formed by removing all boxes

(i, j) of Dλv such that i ≥ j. The column number of any box in D′λ′v is one less than

the column number of the corresponding box of Dλv . Thus in order to ‘place’ a box in

D′λ′v into its appropriate box in Dλv , one must add one to its column index.

Recall also that for l < m and for l = m, l even, the entry of box (l,m) of T ′λv is

sn+l−(m+1). By (4.1), the rightmost box of row i lies in column vn+1−i − (n + 1 − i)
of Dλv , and thus in column vn+1−i − (n+ 1− i)− 1 of D′λ′v ; by Lemma 4.3, the lowest

box of column j, assuming that this box lies to the right of the ‘descending staircase’,

lies in row n + j + 1 − vn+j+1. The entries of these two boxes in T ′µ are sa and sb
respectively, where

a = n+ i− (vn+1−i − (n+ 1− i)− 1 + 1) = 2n+ 1− vn+1−i = vn+1−i = vn+i (5.7)

b = n+ ((n+ j + 1)− vn+j+1)− (j + 1) = (2n+ 1)− vn+j+1 − 1 = vn+j+1 − 1 (5.8)

We consider four possibilities for (i, j) ∈ D′λ′v : i < j, (j + 1, j + 1) ∈ D′λ′v , j odd; i < j,

(j + 1, j + 1) ∈ D′λ′v , j even; i < j, (j + 1, j + 1) 6∈ D′λ′v ; and i = j.

Cases 1 and 2: i < j and (j + 1, j + 1) ∈ D′µ. Let sx, sy denote the reflections

which lie in the rightmost box of row i and row j + 1 respectively. Reflections sik not

lying in the shaded boxes of Figure 12 can be removed from the expression r(c) =

si1si2 · · · sic−1(αic), where αic = αp = εp − εp+1. If j is odd then a = n and b = n− 1;

T ′µ =

i

j

αp sp−1 sp−2 sx

sp+1 sp sp−1

sn−2 sn−3 sn−4

sa

sb sn−2 sn−3 sy

...

· · ·

· · ·

Figure 12. Type Dn, Cases 1 and 2

otherwise a = n− 1 and b = n. In either case, r(c) = εx + εy = εvn+i + εvn+j+1 , where

the last equality is due to (5.7).
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Case 3: i < j and (j + 1, j + 1) 6∈ D′µ. Let sx, sz be the reflections which lie in

the rightmost box of row i and bottom box or column j respectively. Reflections

sik not in the shaded boxes of Figure 13 can be removed from the expression r(c) =

si1si2 · · · sic−1(αic), where αic = αp = εp − εp+1. One checks that r(c) = εx − εz+1 =

εvn+i − εvn+j+1 = εvn+i + εvn+j+1 , where the last equality is due to (5.7) and (5.8).

T ′µ =

i

j

sxαp

sz

...

· · ·

Figure 13. Type Dn, Case 3

Case 4: i = j. The analysis is similar to the other cases.

5.4. Relationship with previously obtained restriction formulas. The formu-

las in this paper for i∗v[OXw ] for types An and Cn, expressed in terms of set-valued

tableaux, appeared earlier in [Kre05] and [Kre06]. A restriction formula in type An can

also be obtained by specializing the factorial Grothendieck polynomials of [McN06].

This restriction formula is generalized to types Bn, Cn, and Dn in [IN11]. The main

difference in the restriction formulas of this paper is that they are positive, meaning

that they result in (−1)l(w) times sums of monomials in e−α − 1, where α is a positive

root (see Theorem 2.6 and Remark 2.7). In the two examples below, we compare the

restriction formulas of this paper and of [IN11].

The formulas of [IN11], whose notation and definitions we adopt in this section, use

the binary operators ⊕ and 	 (see [FK94], [FK96]):

a⊕ b = a+ b+ βab and a	 b =
a− b

1 + βb
,

where β is a parameter. Note that 	 is the inverse of ⊕. Define ⊕x = 0 ⊕ x = x,

	x = 0	x, and set the parameter β equal to −1. One checks that (1−ex)⊕ (1−ey) =

1− ex+y, (1− ex)	 (1− ey) = 1− ex−y, and 	(1− ex) = 1− e−x.

Example 5.15. We work in type Cn, n = 2. Let v = w = {2, 4, 1, 3} = {2, 1, 1, 2} ∈
WPn . Then λv = (2, 1), µ = λ′v = (2, 0), and λ = λ′w = (2, 0).
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We first compute i∗v[OXw ] using Theorem 5.6. The set E ′λ(µ) consists of the single

element

1

1 −2

Thus

i∗v[OXw ] = (e−2ε1 − 1)(e−(ε1−ε2) − 1). (5.9)

We next compute i∗v[OXw ] using the methods of [IN11]. The elements of EIn(λ) [IN11,

9.2] are

× ×

By [IN11, (9.6)],

GC
(n)
λ (x | b) =(x1 ⊕ x1)(x1 ⊕ x2) + (x1 ⊕ x1)(x2 ⊕ b1)(1− x1 ⊕ x2)

+ (x2 ⊕ x2)(x2 ⊕ b1)(1− x1 ⊕ x1).

Substituting bµ = (	bµ1 , . . . ,	bµr , 0, 0, 0, . . .) = (	b2, 0, 0, . . .) for x,

GC
(n)
λ (bµ | b) =(	b2 	 b2)(	b2 ⊕ 0) + (	b2 	 b2)(0⊕ b1)(1−	b2 ⊕ 0)

+ (0⊕ 0)(0⊕ b1)(1−	b2 	 b2)

=(	b2 	 b2)(	b2) + (	b2 	 b2)(b1)(1−	b2).

Substituting 1 − eti for bi, i = 1, 2, and then replacing t1, t2 by ε2, ε1 respectively in

order to account for the ordering of the roots of the Dynkin diagram in [IN11, 4.6], we

obtain

i∗v[OXw ] = (1− e−2ε1)(1− e−ε1) + (1− e−2ε1)(1− eε2)(1− (1− e−ε1)). (5.10)

One checks that this agrees with (5.9).

Example 5.16. Consider type Dn, n = 5. Let v = {2, 4, 5, 8, 10, 1, 3, 6, 7, 9} =

{2, 4, 5, 3, 1, 1, 3, 5, 4, 2}, w = {1, 2, 5, 7, 8, 3, 4, 6, 9, 10} = {1, 2, 5, 4, 3, 3, 4, 5, 2, 1} ∈WPn .

Then λv = (5, 4, 2, 2, 1), µ = λ′v = (4, 2), λw = (3, 3, 2, 0, 0), λ = λ′w = (2, 1).

We first compute i∗v[OXw ] using Theorem 5.6. The set E ′λ(µ) consists of the single

element

3

1

3 -5 -4 -2

Thus

i∗v[OXw ] = −(e−(ε1+ε3) − 1)(e−(ε1−ε5) − 1)(e−(ε3−ε5) − 1). (5.11)
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We next compute i∗v[OXw ] using the methods of [IN11]. The elements of EIn(λ) [IN11,

9.2] are

××
×× ×

×
××

By [IN11, (9.6)],

GD
(n)
λ (x | b) =(x1 ⊕ x2)(x1 ⊕ x3)(x2 ⊕ x3)

+ (x1 ⊕ x2)(x1 ⊕ x3)(x4 ⊕ b1)(1− x2 ⊕ x3)

+ (x1 ⊕ x2)(x2 ⊕ x4)(x4 ⊕ b1)(1− x1 ⊕ x3)

+ (x1 ⊕ x2)(x3 ⊕ b1)(x4 ⊕ b1)(1− x1 ⊕ x3)(1− x2 ⊕ x4)

+ (x3 ⊕ x4)(x3 ⊕ b1)(x4 ⊕ b1)(1− x1 ⊕ x2).

Substituting bµ = (	bµ1+1, . . . ,	bµr+1, 0, 0, 0, . . .) = (	b5,	b3, 0, 0, 0, . . .) for x,

GD
(n)
λ (bµ | b) =(	b5 	 b3)(	b5)(	b3)

+ (	b5 	 b3)(	b5)(b1)(1−	b3)

+ (	b5 	 b3)(	b3)(b1)(1−	b5)

+ (	b5 	 b3)(b1)(b1)(1−	b5)(1−	b3).

Substituting 1−eti for bi, i = 1, . . . , 5, and then replacing t1, t2, t3, t4, t5 by ε5, ε4, ε3, ε2, ε1
respectively in order to account for the ordering of the roots of the Dynkin diagram in

[IN11, 4.6], we obtain

i∗v[OXw ] =(1− e−(ε1−ε3))(1− e−ε1)(1− e−ε3)

+ (1− e−(ε1−ε3))(1− e−ε1)(1− eε5)(1− (1− e−ε3))

+ (1− e−(ε1−ε3))(1− e−ε3)(1− eε5)(1− (1− e−ε1))

+ (1− e−(ε1−ε3))(1− eε5)(1− eε5)(1− (1− e−ε1))(1− (1− e−ε3)).

(5.12)

One checks that this agrees with (5.11).

Although the excited Young diagrams introduced in [IN11] and in this paper are

both related to the reduced excited Young diagrams of [IN09], [Kre05], [Kre06], they

are different combinatorial objects. While the excited Young diagrams of this paper

reside in Young diagrams, those of [IN11] reside in a grid which is unbounded on the

right. This differs from the reduced excited Young diagrams of [IN09], [Kre05], [Kre06],

as well as the excited Young diagrams in this paper, since these all reside in Young

diagrams. Another difference between the excited Young diagrams of [IN11] and of

here is that the former are produced by modifying reduced excited Young diagrams
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by adding ‘×’ symbols; an excited Young diagram of [IN11] with k of these symbols

encodes 2k of what we would call excited Young diagrams.

5.5. Restriction formula in terms of set-valued shifted tableaux. Let λ be a

strict partition. A set-valued filling of D′λ is a function T which assigns to each box

(i, j) of D′λ a nonempty subset T (i, j) of {1, . . . , n}. We call λ the shape of T . We

often call (i, j) a box of T , and refer to an element of T (i, j) as an entry of box (i, j) of

T , or just an entry of T . A set-valued filling T in which each entry of box (i, j) of T is

less than or equal to each entry of box (i, j+ 1) and strictly less than each entry of box

(i+ 1, j) is said to be semistandard. A set-valued shifted Young tableau, or just

set-valued shifted tableau, is a semistandard set-valued filling of D′λ. A shifted

Young tableau or just shifted tableau is a set-valued tableau in which each box

contains a single entry.

Let µ be a strict partition. We say that a set-valued shifted tableau is restricted

by µ if, for any box (i, j) ∈ T and any entry x of (i, j),

j − i ≤ µ(x)− 1. (5.13)

Denote by T ′λ(µ) (resp. T ′red
λ (µ)) the set of set-valued shifted tableaux (resp. shifted

tableaux) of shape λ which are restricted by µ (see Figures 14 and 15). The following

theorem in type Cn appeared in [Kre06].

1 1

2

1 1

3

1 2

3

2 2

3

1,2 2

3

1 1,2

3

1 1

2,3

Figure 14. The set-valued Young tableaux T ′λ(µ) in types Bn and

Cn, for µ = (4, 2, 1), λ = (2, 1). The dashed line encloses T ′red
λ (µ). The

entries of each element of T ′λ(µ) record the row numbers of the boxes in
the corresponding element of E ′λ(µ) appearing in Figure 8.

Theorem 5.17. Let w ≤ v ∈ WPn, and let λ = λ′w and µ = λ′v be the corresponding

strict partitions. Then

Bn : i∗v[OXw ] = (−1)l(w)
∑

T∈T ′λ(µ)

∏
(i,j)∈T

∏
x∈T (i,j)

(
e−2−δij (εvn+x+1+εvn+x+j−i+1 ) − 1

)



46 WILLIAM GRAHAM AND VICTOR KREIMAN

1 1 1

2

1 1 2

2

1 1 2

4

1 2 2

4

1 1 1

4

1 1 2

2,4

1 1,2 2

4

1 1 1

2,4

1 1 1,2

4

1 1 1,2

2

1 1 1,2

2,4

Figure 15. The set-valued shifted tableaux T ′λ(µ) in type D6, where

µ = (5, 3, 2, 1), λ = (3, 1). The dashed line encloses T ′red
λ (µ). The

entries of each element of T ′λ(µ) record the row numbers of the boxes in
the corresponding element of E ′λ(µ) appearing in Figure 9.

Cn : i∗v[OXw ] = (−1)l(w)
∑

T∈T ′λ(µ)

∏
(i,j)∈T

∏
x∈T (i,j)

(
e−(εvn+x+εvn+x+j−i ) − 1

)
Dn : i∗v[OXw ] = (−1)l(w)

∑
T∈T ′λ(µ)

∏
(i,j)∈T

∏
x∈T (i,j)

(
e−(εvn+x+εvn+x+j−i+1 ) − 1

)
,

where for 1 ≤ m ≤ n, εm is defined to equal −εm.

Theorem 5.17 is essentially the same statement as Theorem 5.6, except that the

indexing set E ′λ(µ) has been replaced by T ′λ(µ). This replacement is given by the map

f : T ′λ(µ)→ {subsets of D′µ},

f(T ) = {(x, x+ j − i) | (i, j) ∈ λ, x ∈ T (i, j)}. (5.14)

Proposition 5.18. The map f is a bijection from T ′λ(µ) to E ′λ(µ).

The proof of this proposition is so similar to that of Proposition 4.22 that we omit

the details.

5.6. Hilbert series and Hilbert polynomials of points on Schubert varieties.

In types Cn and Dn, the parabolic subgroup Pn is cominuscule (cf. [BL00, 9.0.14]).

Thus Corollary 2.11 may be used to compute the Hilbert series, Hilbert polynomial,

and multiplicity of Xw at v. In the present setting, the constant mk of Corollary 2.11
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is equal to the number of excited shifted Young diagrams C ∈ E ′λ(µ) such that the

number of boxes of C is k + |µ|. In terms of set-valued shifted Young tableaux, mk is

equal to the number of T ∈ T ′λ(µ) with k + |µ| entries.

Example 5.19. In type Cn, n = 4, let w = {1, 2, 4, 3, 3, 4, 2, 1}, v = {2, 4, 3, 1, 1, 3, 4, 2},
as in Example 5.8. Then λ = λ′w = (2, 1), µ = λ′v = (4, 2, 1), l(w) = |λ′w| = 3, and

dw = n(n+ 1)/2− l(w) = 7. The set of excited shifted Young diagrams E ′λ(µ) appears

in Figure 8, and the set of set-valued shifted tableaux T ′λ(µ) appears in Figure 14. From

either of these figures, one sees that m0 = 4 and m1 = 3. Hence

H(Xw, v)(t) =
4

(1− t)7
− 3

(1− t)6
,

h(Xw, v)(i) = 4

(
i+ 6

6

)
− 3

(
i+ 5

5

)
,

mult(Xw, v) = 4.

Example 5.20. In type Dn, n = 6, let w = {1, 2, 4, 6, 5, 3, 3, 5, 6, 4, 2, 1} and v =

{2, 6, 5, 4, 3, 1, 1, 3, 4, 5, 6, 2}, as in Example 5.9. Then λ = λ′w = (3, 1), µ = λ′v =

(5, 3, 2, 1), l(w) = |λ′w| = 4, and dw = n(n−1)/2− l(w) = 11. The set of excited shifted

Young diagrams E ′λ(µ) appears in Figure 9, and the set of set-valued shifted tableaux

T ′λ(µ) appears in Figure 15. From either of these figures one reads off m0 = 5, m1 = 5,

and m2 = 1. Hence

H(Xw, v)(t) =
5

(1− t)11
− 5

(1− t)10
+

1

(1− t)9
,

h(Xw, v)(i) = 5

(
i+ 10

10

)
− 5

(
i+ 9

9

)
+

(
i+ 8

8

)
,

mult(Xw, v) = 5.

In type Bn, Pn is not cominuscule, so Corollary 1.14 may not be applied directly.

However, since the isomorphism π : OG(n+1, 2n+2)→ OG(n, 2n+1) identifies T -fixed

points and Schubert varieties (see Section 5.2 or [RU10, 1.3]), properties of singularities

of Schubert varieties in OG(n, 2n+ 1) can be obtained from those of Schubert varieties

in OG(n+ 1, 2n+ 2).

Example 5.21. In type Bn, n = 5, let w = (1, 2, 4, 5, 3, 3, 5, 4, 2, 1) and

v = (2, 5, 4, 3, 1, 1, 3, 4, 5, 2). Then v and w are identified with the corresponding ele-

ments of WPn+1 of Example 5.20 (see Section 5.1). Therefore H(Xw, v)(t), h(Xw, v)(i),

and mult(Xw, v) are the same as in that example.

Other multiplicity formulas appear in [LW90], [GR06], and [RU10]. The above for-

mula for the multiplicity of Xw at v, expressed in terms of reduced excited shifted

Young diagrams, appeared earlier in [IN09]. In type Cn, the formula can be deduced
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from [Kre06] and [GR06]. Formulas for the Hilbert function of Xw at v appear in

[GR06], [RU10], and [Upa09].

Appendix A. Root systems and Weyl groups in types An, Bn, Cn, and Dn

We review some facts about the classical root systems and Weyl groups.

Type An−1. The special linear group SLn(C) is equal to G = {g ∈ GLn(C) | det(g) =

1}. The Lie algebra g = sln(C) = {a ∈ gln(C) | trace(a) = 0}. The set of diagonal

matrices in g forms a Cartan subalgebra

h = {diag(a1, . . . , an) | a1, . . . , an ∈ C,
∑

ai = 0}.

For 1 ≤ i ≤ n, let εi ∈ h∗ be the linear functional

εi(diag(a1, . . . , an)) = ai.

Then {ε1, . . . , εn} span h∗. The set of roots Φ of g relative to h is {εi−εj , 1 ≤ i 6= j ≤ n}.
The set

∆ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn}
forms a base of Φ, with respect to which the set of positive roots is

Φ+ = {εi − εj , 1 ≤ i < j ≤ n}.

For i ∈ {1, . . . , n− 1}, the reflection si along αi is given by:

si :

{
εi 7→ εi+1

εi+1 7→ εi
.

The Weyl groupW = 〈s1, . . . , sn〉 ⊆ GL(h∗) is the group of permutations of {ε1, . . . , εn},
which is isomorphic to Sn. Denote a permutation w ∈ Sn by its one-line notation

w = (w1, . . . , wn), where w(1) = w1 , w(2) = w2, etc.

Type Cn. Define the inner product 〈x, y〉 = xtJy, x, y ∈ C2n, where J is the an-

tidiagonal 2n× 2n matrix whose top n antidiagonal entries are 1’s and whose bottom

n antidiagonal entries are -1’s. The symplectic group Sp2n(C) is equal to G = {g ∈
GL2n(C) | 〈gu, gv〉 = 〈u, v〉, u, v ∈ C2n}. The Lie algebra g = sp2n(C) = {a ∈ gl2n(C) |
〈au, v〉 + 〈u, av〉 = 0, u, v ∈ C2n}. The set of diagonal matrices in g forms a Cartan

subalgebra

h = {diag(a1, . . . , an,−an, . . . ,−a1) | a1, . . . , an ∈ C}.
For 1 ≤ i ≤ n, let εi ∈ h∗ be the linear functional

εi(diag(a1, . . . , an,−an, . . . ,−a1)) = ai.

Then {ε1, . . . , εn} forms a basis for h∗. The set of roots Φ of g relative to h is {±εi ±
εj , 1 ≤ i 6= j ≤ n} ∪ {±2εi, i = 1, . . . , n}. The set

∆ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn} ∪ {αn = 2εn}
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forms a base of Φ, with respect to which the set of positive roots is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n} ∪ {2εi, i = 1, . . . , n}.

The reflection si along αi is given by:

si :


εi 7→ εi+1

εi+1 7→ εi

εj 7→ εj , j 6= i, i+ 1

, if i ∈ {1, . . . , n− 1}

sn :

{
εn 7→ −εn
εj 7→ εj , j 6= n

The Weyl group W = 〈s1, . . . , sn〉 ⊆ GL(h∗) is the group of permutations and sign

changes of {ε1, . . . , εn}. More precisely, W ∼= Sn n Zn2 .

The map W → S2n given by si 7→ (i, i+1)(i+ 1, i), i 6= n, sn 7→ (i, i), is a monomor-

phism, identifying W with

W ∼= {(w1, . . . , w2n) ∈ S2n | wı = wi, 1 ≤ i ≤ n}. (A.1)

Type Bn. Define the inner product 〈x, y〉 = xtJy, x, y ∈ C2n+1, where J is the

antidiagonal (2n+ 1)× (2n+ 1) matrix all of whose antidiagonal entries are 1’s, except

for the entry in row and column n+1, which is 2. The odd orthogonal group SO2n+1(C)

is equal to G = {g ∈ GL2n+1(C) | 〈gu, gv〉 = 〈u, v〉, u, v ∈ C2n+1}.The Lie algebra

g = so2n+1(C) = {a ∈ gl2n+1(C) | 〈au, v〉 + 〈u, av〉 = 0, u, v ∈ C2n+1}. The set of

diagonal matrices in g forms a Cartan subalgebra

h = {diag(a1, . . . , an, 0,−an, . . . ,−a1) | a1, . . . , an ∈ C}.

For 1 ≤ i ≤ n, let εi ∈ h∗ be the linear functional

εi(diag(a1, . . . , an, 0,−an, . . . ,−a1)) = ai.

Then {ε1, . . . , εn} forms a basis for h∗. The set of roots Φ of g relative to h is {±εi ±
εj , 1 ≤ i 6= j ≤ n} ∪ {±εi, i = 1, . . . , n}. The set

∆ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn} ∪ {αn = εn}

forms a base of Φ, with respect to which the set of positive roots is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n} ∪ {εi, i = 1, . . . , n}.

Since the roots in types Bn and Cn agree up to scalar multiples, they have the same

Weyl group. Thus (A.1) also gives an identification of the Weyl group in type Bn.

Type Dn. Define the inner product 〈x, y〉 = xtJy, x, y ∈ C2n, where J is the antidi-

agonal 2n × 2n matrix all of whose antidiagonal entries are 1’s. The even orthogonal

group SO2n(C) is equal to G = {g ∈ GL2n(C) | 〈gu, gv〉 = 〈u, v〉, u, v ∈ C2n}. The
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Lie algebra g = so2n(C) = {a ∈ gl2n(C) | 〈au, v〉 + 〈u, av〉 = 0, u, v ∈ C2n}, where

〈x, y〉 = xtJy, x, y ∈ C2n. The set of diagonal matrices in g forms a Cartan subalgebra

h = {diag(a1, . . . , an,−an, . . . ,−a1) | a1, . . . , an ∈ C}.

For 1 ≤ i ≤ n, let εi ∈ h∗ be the linear functional

εi(diag(a1, . . . , an,−an, . . . ,−a1)) = ai.

Then {ε1, . . . , εn} forms a basis for h∗. The set of roots Φ of g relative to h is {±εi ±
εj , 1 ≤ i 6= j ≤ n}. The set

∆ = {α1 = ε1 − ε2, . . . , αn−1 = εn−1 − εn, αn = εn−1 + εn}

forms a base of Φ, with respect to which the set of positive roots is

Φ+ = {εi ± εj , 1 ≤ i < j ≤ n}.

The reflection si along αi is given by:

si :


εi 7→ εi+1

εi+1 7→ εi

εj 7→ εj , j 6= i, i+ 1

, if i ∈ {1, . . . , n− 1}

sn :


εn−1 7→ −εn
εn 7→ −εn−1

εj 7→ εj , j 6= n− 1, n

The Weyl group W = 〈s1, . . . , sn〉 ⊆ GL(h∗) is the group of permutations and even

number of sign changes of {ε1, . . . , εn}. More precisely, W ∼= Sn n Zn−1
2 .

The map W → S2n given by si 7→ (i, i + 1)(i+ 1, i), i 6= n, sn 7→ (n, n + 1)(n −
1, n)(n+ 1, n+ 2)(n, n+ 1), is a monomorphism, identifying W with

W ∼= {(w1, . . . , w2n) ∈ S2n | wı = wi, 1 ≤ i ≤ n,#{i < n | wi > n} is even.} (A.2)

Appendix B. Restriction formulas and opposite Schubert varieties

In this section we explain the relation between the restriction formulas for Schubert

varieties and for opposite Schubert varieties. We have included this because some

references use the opposite Schubert varieties— indeed, the formulas in [Gra02] are for

i∗x[OXw ], where Xw = B · wB is the opposite Schubert variety to Xw. However, the

formula of Theorem 2.6 can be obtained from the formula for opposite Schubert varieties

by using Proposition B.3 below. To prove this proposition we need two lemmas. Let

∗ denote the involution of R(T ) defined by ∗(eλ) = e−λ. If T acts on any scheme M ,

we can define a new action � of T by the rule t � m = t−1m. Write KT (M,�) to

denote the equivariant K-theory of M with the � action. Any coherent sheaf on M

which is equivariant with respect to the original T -action is equivariant with respect

to the � action. There is a map KT (M) → KT (M,�), ξ 7→ ξ�, taking the class

of a T -equivariant sheaf F to the class of the same sheaf, but viewed as equivariant
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with respect to the � action. Observe that if M is a point, then KT (M) = R(T ) and

ξ� = ∗ξ.

Lemma B.1. Suppose T acts on a smooth scheme X. Let x ∈ XT and let i : {x} → X

denote the inclusion. Then for any ξ ∈ KT (M),

i∗(ξ�) = ∗(i∗ξ).

Proof. If we write ξ =
∑

j aj [V
j ], where each V j is a T -equivariant vector bundle, then

for each j, the fiber V j
x is a representation of T . We have i∗ξ =

∑
aj [V

j
x ] and

i∗(ξ�) =
∑

aj([V
j
x ]�) = ∗(

∑
aj([V

j
x ])) = ∗(i∗ξ).

�

Lemma B.2. There exists an involution Ψ : G → G such that Ψ(t) = t−1 for t ∈ T ,

Ψ(B) = B−, and ψ(nT ) = nT for n ∈ NG(T ).

Proof. Given a root β of g, let gβ denote the corresponding root space. For each

simple root α of g we can find elements xα ∈ gα, x−α ∈ g−α, and hα ∈ t such that

xα, {hα, x−α} is an sl2-triple (see [Sam90, Section 2.4]. There is an involution ψ of

g which acts by multiplication by −1 on t such that if α is any simple root, then

ψ(xα) = x−α (see [Hum72, Proposition 14.3]). It follows that ψ(b) = b−. Let G̃ denote

the simply connected algebraic group with Lie algebra g, and let T̃ denote the subgroup

of G̃ with Lie algebra t. Because G̃ is simply connected, ψ lifts to an automorphism

Ψ of G̃. Moreover, since ψ acts by multiplication by −1 on t, Φ takes any element of

T̃ to its inverse. The group G is isomorphic to G/Z1, where Z1 is a subgroup of the

center Z of G̃. Since Z1 ⊂ T̃ , and Z1 is closed under inverses, Ψ(Z1) = Z1. Therefore

Ψ descends to an automorphism (also denoted Ψ) of G. The assertions Ψ(t) = t−1

for t ∈ T , Ψ(B) = B− follow from the corresponding properties of ψ. Finally, let

Jα = π
2 (xα − x−α). The simple reflection sα in W is represented by the element

nα = exp(Jα) ∈ NG(T ) (see [Sam90, Section 2.15]). The argument in Samelson shows

that sα is also represented by the element exp(−Jα) = Ψ(nα). Hence Ψ(nαT ) = nαT .

Given any n ∈ NG(T ), nT = nα1nα2 · · ·nαkT for some simple roots α1, . . . , αk. It

follows that Ψ(nT ) = nT , as claimed. �

Let X̃ = G/B−, X̃w = B− · wB− ⊂ X̃. Let ĩx : {pt} → X̃ be the map ĩx(pt) = xB−.

Proposition B.3.

i∗x[OXw ] = ∗(i∗xw0
[OXww0

]).

Proof. The map φ : G/B → G/B− defined by φ(gB) = gw0B
− is a G-equivariant

isomorphism. Since φ(xB) = xw0B
− and φ(Xw) = X̃ww0 , we have

i∗x[OXw ] = ĩxw0 [O
X̃ww0

]. (B.1)
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Let Ψ denote the involution of G from Lemma B.2. Since Ψ(B) = B−, there is an

induced map (which we also denote by Ψ) G/B → G/B−, gB 7→ ψ(g)B−. Since

Ψ(nT ) = nT and Ψ(B) = B−, for any u ∈ W , Ψ(Xu) = X̃u. The map Ψ is T -

equivariant if T acts by left multiplication on G/B−, and by t� gB = t−1gB on G/B.

Therefore, Ψ∗[O
X̃u

] = [OXu ]�, where the subscript � indicates that we are using the

� action of T . Therefore,

ĩ∗x[O
X̃u

] = i∗([OXu ]�) = ∗(i∗[OXu ]), (B.2)

where the second equality follows from Lemma B.1. The proposition follows from (B.1)

and (B.2), taking u = ww0. �

References

[AJS94] H. H. Andersen, J. C. Jantzen, and W. Soergel, Representations of quantum groups at a pth
root of unity and of semisimple groups in characteristic p: independence of p, Astérisque
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by Vladimir Baranovsky [V. Yu. Baranovskĭı], pp. 127–183. MR 1649626 (99j:17020)

[GK08] William Graham and Shrawan Kumar, On positivity in T -equivariant K-theory of flag vari-
eties, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 093, 43. MR 2439542 (2009g:14061)

[GR04] Stephen Griffeth and Arun Ram, Affine Hecke algebras and the Schubert calculus, European
J. Combin. 25 (2004), no. 8, 1263–1283. MR 2095481 (2005h:14118)



EXCITED YOUNG DIAGRAMS 53

[GR06] Sudhir R. Ghorpade and K. N. Raghavan, Hilbert functions of points on Schubert varieties
in the symplectic Grassmannian, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5401–5423.
MR 2238920 (2007d:14088)

[Gra02] William Graham, Equivariant K-theory and Schubert varieties, preprint (2002).
[Hum72] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-

Verlag, New York, 1972, Graduate Texts in Mathematics, Vol. 9. MR 0323842 (48 #2197)
[IN09] Takeshi Ikeda and Hiroshi Naruse, Excited Young diagrams and equivariant Schubert calculus,

Trans. Amer. Math. Soc. 361 (2009), no. 10, 5193–5221. MR 2515809 (2010i:05351)
[IN11] , K-theoretic analogue of factorial Schur P- and Q-functions, arXiv:1112.5223, 2011.
[KK86] Bertram Kostant and Shrawan Kumar, The nil Hecke ring and cohomology of G/P for a

Kac-Moody group G, Adv. in Math. 62 (1986), no. 3, 187–237. MR 866159 (88b:17025b)
[KL04] Victor Kreiman and V. Lakshmibai, Multiplicities of singular points in Schubert varieties of

Grassmannians, Algebra, arithmetic and geometry with applications (West Lafayette, IN,
2000), Springer, Berlin, 2004, pp. 553–563. MR 2037109 (2005c:14060)

[KM04] Allen Knutson and Ezra Miller, Subword complexes in Coxeter groups, Adv. Math. 184
(2004), no. 1, 161–176. MR 2047852 (2005c:20066)
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