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Abstract. We give a positive equivariant Littlewood-Richardson rule also dis-
covered independently by Molev. Our proof generalizes a proof by Stembridge
of the classical Littlewood-Richardson rule. We describe a weight-preserving
bijection between our indexing tableaux and trapezoid puzzles which restricts
to a bijection between positive indexing tableaux and Knutson-Tao puzzles.
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1. Introduction

In [MS], Molev and Sagan introduced a rule in terms of barred tableaux for
computing the structure constants cν

λ,µ for products of two factorial Schur functions.

Knutson and Tao [KT] realized that under a suitable specialization these are the
structure constants Cν

λ,µ for products of two Schubert classes in the equivariant

cohomology ring of the Grassmannian. Knutson and Tao [KT] also gave a new
rule for computing Cν

λ,µ, i.e., an equivariant Littlewood-Richardson rule, which is

manifestly positive in the sense of Graham [Gr]. Their rule was expressed in terms
of puzzles, generalizations of combinatorial objects first introduced by Knutson,
Tao, and Woodward [KTW].

We describe a new nonnegative equivariant Littlewood-Richardson rule, ex-
pressed in terms of skew barred tableaux, which was also discovered independently
by Molev [Mo1]. By nonnegative we mean that all of the coefficients are either
positive or zero; restricting to the positive coefficients then yields a positive rule.
The rule includes several equivalent combinatorial tests for determining in advance
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which skew barred tableaux result in positive coefficients. Although our rule is
similar to the Molev-Sagan rule [MS], it produces a different expression for cν

λ,µ

(see Examples 2.11 and 10.3). For example, the Molev-Sagan rule is not manifestly
positive. We remark that unlike the Knutson-Tao rule, whose positivity is obvious
from its statement, the nonnegativity and positivity of our rule require proof.

In this paper, we compute the structure constants cν
λ,µ (as do both [MS] and

[Mo1]), and then determine the structure constants Cν
λ,µ by specialization (as does

[Mo1]). Our strategy for proving our rule for the structure constants cν
λ,µ is to

generalize a concise proof by Stembridge [St] of a standard Littlewood-Richardson
rule from Schur functions to factorial Schur functions; a similar method is used by
[Kr2]. This method in fact yields a more general result, namely, a generalization of
Zelevinsky’s extension of the Littlewood-Richardson rule [Z].

We illustrate a weight-preserving bijection Φ between skew barred tableaux and
trapezoid puzzles, combinatorial objects generalizing Knutson-Tao puzzles. The
bijection Φ restricts to a bijection between the skew barred tableaux indexing pos-
itive coefficients and Knutson-Tao puzzles. This gives a new proof of Knutson and
Tao’s equivariant Littlewood-Richardson rule, and also demonstrates that our pos-
itive rule is really the same rule as Knutson and Tao’s, just expressed in terms of
different combinatorial indexing sets. Our representation of the bijections gener-
alizes Tao’s ‘proof without words’ [V, Figure 11], which gives a bijection between
tableaux and puzzles in the nonequivariant setting.

The results of this paper were presented at the AMS Sectional Meeting, Santa
Barbara, CA, April 2005, and the University of Georgia Algebra Seminar, August
2006.

We thank the referee for valuable comments and suggestions.

2. Statement of Results

Let N denote the set of nonnegative integers, and let n ≥ d be fixed positive
integers. For m ∈ N, define m′ := d + 1 −m. For λ = (λ1, . . . , λd) ∈ Nd, define
|λ| = λ1+· · ·+λd. Denote by Pd the set of all such λ which are partitions, i.e., such
that λ1 ≥ · · · ≥ λd, and by Pd,n the set of all such partitions for which λ1 ≤ n− d.
Let λ = (λ1, . . . , λd), µ = (µ1, . . . , µd), ρ = (d − 1, d − 2, . . . , 0), and 1 = (1, . . . , 1)
be fixed elements of Pd. For any sequence i = i1, i2, . . . , it, ij ∈ {1, . . . , d}, define
the content of i to be ω(i) = (ξ1, . . . , ξd) ∈ Nd, where ξk is the number of k’s in
the sequence.

2.1. Defining the Structure Constants cν
λ,µ for Products of Factorial Schur

Functions. A reverse Young diagram is a right and bottom justified array of
boxes. To µ we associate the reverse Young diagram whose bottom row has length
µ1, next to bottom row has length µ2, etc. We also denote this reverse Young
diagram by µ. The columns of a reverse Young diagram are numbered from right
to left and the rows from bottom to top.

A reverse tableau of shape µ is a filling of each box of µ with an integer in
{1, . . . , d} in such a way that the entries weakly increase along any row from left to
right and strictly increase along any column from top to bottom. Let R(µ) denote
the set of all reverse tableaux of shape µ. Let x1, . . . , xd be a finite set of variables
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Figure 1. The reverse Young diagram (4, 3, 1), with rows and
columns numbered.

and (yi)i∈N>0 an infinite set of variables. For R ∈ R(µ), define

(x | y)R =
∏

a∈R

(
xa − ya′+c(a)−r(a)

)
,

where for entry a ∈ R, c(a) and r(a) are the column and row numbers of a respec-
tively. The factorial Schur polynomial is defined to be

sµ(x | y) =
∑

R∈R(µ)

(x | y)R.

The factorial Schur function is usually expressed in the literature in terms of
Young tableaux rather than reverse tableaux; we show the equivalence of the two
formulations below. Factorial Schur functions are special cases of Lascoux and
Schützenberger’s double Schubert polynomials [LS1, LS2]. The factorial Schur func-
tion sµ(x | y), under a certain specialization of the y variables, was first defined by
Biedenbarn and Louck [BL1, BL2], and further studied by Chen and Louck [CL].
The more general factorial Schur function sµ(x | y) is due to Macdonald [Ma2] and
Goulden and Greene [GG]. Factorial Schur functions appear in the study of the cen-
ter of the enveloping algebra U(gln) (see Okounkov [Ok], Okounkov and Olshanski
[OO], Nazarov [Na], Molev [Mo2, Mo1], and Molev and Sagan [MS]).

We check that our definition of factorial Schur function agrees with the version
appearing in [Ma2] and [MS], which is expressed in terms of Young tableaux with
entries in {1, . . . , d}. Replacing each entry a in a reverse tableau R by a′ and
rotating the resulting tableau by 180 degrees, one obtains a Young tableau T .
This operation defines a bijection between reverse tableax of shape µ and Young
tableaux of shape µ with entries in {1, . . . , d}. The polynomials (x | y)T , as defined
in [MS], and (x | y)R, as defined above, are related by a fixed permutation on the
indices of the xi’s, namely the involution i 7→ i′. Thus the equivalence of the two
definitions follows from the fact that factorial Schur functions are symmetric in the
xi’s. (Corollary 5.4 also establishes the equivalence of the two definitions.)

From the definition of sµ(x | y), one sees that

sµ(x | y) = sµ(x) + terms of lower degree in the xi’s,

where sµ(x) is the Schur function in x1, . . . , xd. Since the Schur functions form a
Z-basis for Z[x1, . . . , xd]

Sd , the factorial Schur functions must form a Z[y]-basis for
Z[y][x1, . . . , xd]

Sd . Thus

(1) sλ(x | y)sµ(x | y) =
∑

cν
λ,µsν(x | y),

for some polynomials cν
λ,µ ∈ Z[y], where the summation is over all ν ∈ Pd.
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We write µ ⊆ ν if µi ≤ νi, i = 1, . . . , d. Using a vanishing theorem of Okounkov
[Ok], Molev and Sagan prove [MS, Theorem 3.1]

(2) µ 6⊆ ν =⇒ cν
λ,µ = 0.

From the definition one sees that sµ(x | y) is a homogeneous polynomial of degree
|µ|. Therefore if cν

λ,µ 6= 0, then |λ|+ |µ|− |ν| = deg(cν
λ,µ). If |λ|+ |µ|− |ν| = 0, then

cν
λ,µ ∈ Z is the classical Littlewood-Richardson coefficient (see [F1], [LR], [Sa]).

2.2. Computing the Structure Constants cν
λ,µ. The skew diagram λ ∗ µ is

obtained by placing the Young diagram λ above and to the right of the reverse
Young diagram µ (see Figure 2). A skew barred tableau L of shape λ ∗ µ is a
filling of each box of the subdiagram λ of λ ∗ µ with an element of {1, . . . , d} and
each box of the subdiagram µ of λ ∗µ with an element of {1, . . . , d}∪ {1, . . . , d}, in
such a way that the values of the entries, without regard to whether or not they are
barred, weakly increase along any row from left to right and strictly increase along
any column from top to bottom. The unbarred column word of L, denoted by
Lu, is the sequence of unbarred entries of L beginning at the top of the rightmost
column, reading down, then moving to the top of the next to rightmost column and
reading down, etc. (the barred entries are just skipped over in this process). We
say that that the unbarred column word of L is Yamanouchi if, when one writes
down the word and stops at any point, one will have written at least as many ones
as twos, at least as many twos as threes, . . ., at least as many (d− 1)’s as d’s. The
unbarred content of L is ω(Lu), the content of the unbarred column word.

Definition 2.3. An equivariant Littlewood-Richardson skew tableau is a
skew barred tableau whose unbarred column word is Yamanouchi. We denote the set
of all equivariant Littlewood-Richardson skew tableaux of shape λ ∗ µ and unbarred
content ν by LRν

λ,µ.

We remark that this definition forces the i-th row of λ to consist of λi unbarred i’s.
For L a skew barred tableau and a ∈ L, denote by Lu

<a the portion of the
unbarred column word of L which comes before reaching a when reading entries
from L. Define

(3) cL =
∏

a∈L
a barred

(
y|a|′+ω(Lu

<a)|a|
− y|a|′+c(a)−r(a)

)
,

where r(a) and c(a) are the row and column numbers of a considered as entries of
µ (see Figure 1), and |a|′ = d + 1 − |a| (we use the absolute value symbol, |a|, to
stress that we are interested in the integer value of the barred entry a). As usual,
the trivial product is defined to be 1. The main result of this paper, which is proven
in Sections 5, 7, and 8, is the following

Theorem 2.4. cν
λ,µ =

∑

L∈LRν
λ,µ

cL.
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Figure 2. An equivariant Littlewood-Richardson skew tableau
of shape λ ∗ µ and unbarred content µ, where λ = (2, 1, 1),
µ = (4, 3, 1), and ν = (3, 3, 2, 1). The unbarred column word,
1, 1, 2, 3, 2, 4, 3, 1, 2, is Yamanouchi, as required.

Example 2.5. Let L be the equivariant Littlewood-Richardson skew tableau of Fig-
ure 2. Suppose that d = 4. Consider the entry a = 1 in row 2, column 2 of
µ. We have Lu

<a = 1, 1, 2, 3, 2, 4, so ω(Lu
<a) = (2, 2, 1, 1). Thus |a|′ + ω(Lu

<a)|a| =
(d+1−(1))+(2, 2, 1, 1)1 = 4+2 = 6. Also, |a|′+c(a)−r(a) = (d+1−(1))+2−2 = 4.
Therefore the contribution of this entry to cL is y6 − y4.

Similarly, one computes the contribution of the entry 2 in row 1, column 3 to
be y5 − y5 and the contribution of the entry 3 in row 2, column 1 to be y3 − y1.
Therefore cL = (y5 − y5)(y6 − y4)(y3 − y1), which equals 0.

2.6. Nonnegativity and Positivity. If L ∈ LRν
λ,µ, then we write cL > 0 if each

factor in (3) is of the form yi − yj with i > j. We write cL ≥ 0 if either cL > 0 or
cL = 0. Note that the definition of cL ≥ 0 does not preclude the possibility that
some factor of (3) is of the form yi−yj with i < j; however, in this case some other
factor must be of the form yi − yj with i = j, thus forcing cL = 0. The following
proposition is proven in Section 4.

Proposition 2.7. If L ∈ LRν
λ,µ, then cL ≥ 0.

By Theorem 2.4, if cL = 0 for all L ∈ LRν
λ,µ, then cν

λ,µ = 0. Proposition 2.7
implies that the converse is true as well:

Corollary 2.8. If cν
λ,µ = 0, then cL = 0 for all L ∈ LRν

λ,µ.

Proof. Denote by cL|yi=i the integer obtained by specializing each yi to i in cL. By

Proposition 2.7, cL|yi=i ≥ 0, and cL|yi=i = 0 if and only if cL = 0. By Theorem

2.4,
∑

L∈LRν
λ,µ

cL = cν
λ,µ = 0. Thus

∑
L∈LRν

λ,µ
(cL|yi=i) = 0, which implies that

cL|yi=i = 0 for all L ∈ LRν
λ,µ, which in turn implies cL = 0 for all L ∈ LRν

λ,µ. �

In Example 2.5, µ 6⊆ ν. Thus by (2), cν
λ,µ = 0. Hence Corollary 2.8 verifies

cL = 0.



6 VICTOR KREIMAN

Let LRν +
λ,µ be the set of L ∈ LRν

λ,µ for which cL > 0. By Proposition 2.7, we
can restrict the summation in Theorem 2.4 to such L:

Corollary 2.9. cν
λ,µ =

∑

L∈LRν +
λ,µ

cL.

One could, of course, use (3), the definition of cL, to distinguish between cL > 0
and cL = 0: cL > 0 if and only if ω(Lu

<a)|a| > c(a)− r(a) for all barred a ∈ L. The
following Proposition gives a number of other tests for more efficiently making this
determination.

Proposition 2.10. If L ∈ LRν
λ,µ, then the following are equivalent:

1. cL > 0
2. ω(Lu

<a)|a| > c(a)− r(a) for all barred a ∈ L.
3. ω(Lu

<a)|a| > c(a)− r(a) for all barred a ∈ L with r(a) = 1.
4. ω(Lu

<a)|a| ≥ c(a) for all barred a ∈ L
5. ω(Lu

<a)|a| ≥ c(a) for all barred a ∈ L with r(a) = 1.

If L ∈ LRν
λ,µ satisfies any of these equivalent conditions, then we say that L is

positive. It is obvious that 4 =⇒ 2 =⇒ 3 ⇐⇒ 5. In Section 4, we prove
3 =⇒ 4. Condition 3 states that it suffices to check barred entries on the bottom
row of L for positivity. Condition 4 has the following interpretation: for any barred
entry a ∈ L, the corresponding factor yi − yj in cL satisfies i− j ≥ r(a) (which of
course implies i− j > 0, the condition required for positivity).

Example 2.11. Let d = 3, λ = (1, 1), µ = (3, 2), and ν = (3, 2, 1). We list all
L ∈ LRν +

λ,µ, and for each L we give cL:

1 2 3

1 1

2

1

cL = y6 − y5

1 2 3

1 1

2

1

cL = y5 − y3

1 2 3

1 1

2

1

cL = y4 − y2

1 2 3

1 2

2

1

cL = y3 − y1

Note that if L has an unbarred 2 in the upper right box of µ, then the unbarred
column word of L is not Yamanouchi, and if L has two unbarred 1’s on the top row
of µ and is not the leftmost diagram, then cL = 0; thus we do not include such L
among LRν +

λ,µ. By Corollary 2.9, cν
λ,µ = (y6−y5)+(y5−y3)+(y4−y2)+(y3−y1).

We list all L ∈ LRν +
µ,λ, and for each L we give cL:

3

1

2 2

1 1 1

cL = y6 − y2

3

2

2 2

1 1 1

cL = y4 − y1

By Corollary 2.9, cν
µ,λ = (y6 − y2) + (y4 − y1). We see that cν

µ,λ = cν
λ,µ. This is

a general fact ensured by (1); however, it is not apparent from the statement of
Corollary 2.9.
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See also Example 10.3, where these same coefficients cν
λ,µ are computed using the

Molev-Sagan rule.

Example 2.12. For cases where µ = ν, a formula for cν
λ,µ which produces a

different positive expression than Corollary 2.9 appears in [Bi], [IN], and [Kr1].
For example, using this formula, for d = 3, λ = (2, 1), and µ = ν = (3, 3, 1), one
computes:

cν
λ,µ =(y6 − y1)(y6 − y3)(y5 − y1) + (y6 − y1)(y5 − y4)(y5 − y1).

Using Corollary 2.9:

cν
λ,µ =(y5 − y3)(y5 − y1)(y3 − y1) + (y6 − y4)(y5 − y1)(y3 − y1)

+ (y6 − y4)(y6 − y3)(y3 − y1) + (y5 − y3)(y4 − y3)(y5 − y1)

+ (y6 − y4)(y4 − y3)(y5 − y1) + (y6 − y4)(y6 − y3)(y4 − y3)

+ (y6 − y4)(y5 − y4)(y5 − y1) + (y6 − y4)(y5 − y4)(y6 − y3)

cν
µ,λ =(y6 − y4)(y6 − y2)(y5 − y2) + (y5 − y3)(y6 − y2)(y5 − y2)

+ (y6 − y4)(y6 − y2)(y2 − y1) + (y5 − y3)(y6 − y2)(y2 − y1)

+ (y6 − y4)(y5 − y1)(y2 − y1) + (y5 − y3)(y5 − y1)(y2 − y1).

These three polynomials are, of course, equal.

For L ∈ LRν
λ,µ, |λ| + |µ| − |ν| = #(entries of L) − #(unbarred entries of L) =

#(barred entries of L) which equals deg(cν
λ,µ) if cν

λ,µ 6= 0. If |λ| + |µ| − |ν| = 0,
then L has no barred entries, and Theorem 2.4 reduces to a version of the classical
Littlewood-Richardson rule (see [F1], [LR], [Sa]).

2.13. Defining the Structure Constants Cν
λ,µ for products of two Schubert

Classes in H∗
T (Grd,n). The Grassmannian Grd,n is the set of d-dimensional

complex subspaces of Cn. Let {e1, . . . , en} be the standard basis for Cn. Consider
the opposite standard flag, whose i-th space is Span(en, . . . , en−i+1). For λ ∈ Pd,n,
the (opposite) Schubert variety Xλ of Grd,n is defined by incident relations:

Xλ = {V ∈ Grd,n | dim(V ∩ Fi) ≥ dim(Cλ ∩ Fi)}, i = 1, . . . , n,

where Cλ = Span(eλd+d, . . . , eλ1+1). The Schubert variety Xλ is invariant under
the action of the group T = (C∗)n on Grd,n. Thus it determines a class Sλ in the
equivariant cohomology ring H∗

T (Grd,n).
Let V = Grd,n×Cn be the trivial vector bundle on Grd,n, with diagonal T -action,

where T acts naturally on Grd,n and on Cn (thus V is not equivariantly trivial).
Let Y1, . . . , Yn be the equivariant Chern roots of V ∗. Then Y1, . . . , Yn ∈ H∗

T (Grd,n)
are algebraically independent, and H∗

T (Grd,n) is a free Z[Y1, . . . , Yn]-module, with
the Schubert classes forming a Z[Y1, . . . , Yn]-basis. Thus for λ, µ ∈ Pd,n,

SλSµ =
∑

ν∈Pd,n

Cν
λ,µSν , for some Cν

λ,µ ∈ Z[Y1, . . . , Yn].

Let S = {(w, v) ∈ V | v ∈ w} be the tautological vector bundle on Grd,n, a
T -invariant sub-bundle of V , and let X1, . . . , Xd the equivariant Chern roots of S.
We have (see [F2], [KT], [Mi])

Proposition 2.14. For λ ∈ Pd, Sλ = sλ(X1, . . . , Xd,−Yn, . . . ,−Y1, 0, 0, . . .).
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Thus by specializing (1), we can determine the structure constants Cν
λ,µ.

Corollary 2.15. For λ, µ, ν ∈ Pd,n, Cν
λ,µ = cν

λ,µ(−Yn, . . . ,−Y1, 0, 0, . . .).

2.16. Computing the Structure Constants Cν
λ,µ. Let λ, µ, ν ∈ Pd,n. By Corol-

lary 2.15, Cν
λ,µ can be computed using the formula for cν

λ,µ. Letting L ∈ LRν
λ,µ,

we have:

(4) Both subscripts in equation (3) for cL lie between 1 and n.

Indeed,

(i) |a|′ + ω(Lu
<a)|a| = d + 1 − |a| + ω(Lu

<a)|a| ≤ d + ω(Lu
<a)|a| ≤ d + ν1 ≤ n.

The last two inequalities are due to ω(Lu) = ν and ν ∈ Pd,n respecctively.
(ii) |a|′ + c(a)− r(a) = d + 1− |a|+ c(a)− r(a) < d + c(a) ≤ d + µ1 ≤ n. The

last two inequalities are due to the facts that the reverse Young diagram µ
has µ1 columns and µ ∈ Pd,n respectively.

(iii) One checks that |a| ≤ d + 1− r(a). Thus |a|′ + c(a)− r(a) = d + 1− |a|+
c(a)− r(a) ≥ c(a) ≥ 1.

Define

CL = cL(−Yn, . . . ,−Y1, 0, 0, . . .)(5)

=
∏

a∈L

a barred

(
Y(n−d)+|a|−(c(a)−r(a)) − Y(n−d)+|a|−ω(Lu

<a)|a|

)
.(6)

We write CL > 0 if each factor in (6) is of the form Yi−Yj with i > j, and we write
CL ≥ 0 if either CL > 0 or CL = 0. By (4), (5), and the algebraic independence of
the Yi’s, cL = 0 ⇐⇒ CL = 0, and cL > 0 ⇐⇒ CL > 0. Thus Propositions 2.7
and 2.10 imply

Corollary 2.17. CL ≥ 0, and CL > 0 ⇐⇒ L satisfies any of the equivalent
conditions of Proposition 2.10.

By Theorem 2.4, Corollary 2.15, and Corollary 2.17, we have

Corollary 2.18. Cν
λ,µ =

∑

L∈LRν
λ,µ

CL =
∑

L∈LRν +
λ,µ

CL.

Example 2.19. We continue Example 2.11. For n ≥ 6, λ, µ ∈ Pd,n. Thus for ν ∈
Pd,n, Cν

λ,µ = (Yn+1−2−Yn+1−6)+(Yn+1−1−Yn+1−4) = (Yn−1−Yn−5)+(Yn−Yn−3).

2.20. Equivalence of Molev’s Results. Our equivariant Littlewood-Richardson
skew tableaux are in bijection with Molev’s indexing tableaux [Mo1]. To determine
the tableau in [Mo1] which corresponds to our L ∈ LRν

λ,µ, replace all barred entries

of L|µ by unbarred entries and vice versa, and then rotate the resulting object by
180 degrees. If one makes this modification, then Corollary 2.9 is equivalent to
[Mo1, Theorem 2.1] after accounting for the relationship between double Schur
functions and factorial Schur functions (see [Mo1, (1.9)]), and Corollary 2.18 is
identical to [Mo1, Corollary 3.1].

In our notation, Molev’s positivity criterion states that for L ∈ LRν
λ,µ, cL > 0 if

and only if

(7) ω(Lu)′c(a) ≥ |a| for all a ∈ L with r(a) = 1,
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where ω(Lu)′ is the conjugate partition to ω(Lu) (in this case Molev calls L|µ ν-
bounded). One can re-express (7) as follows:

ω(Lu)|a| ≥ c(a) for all a ∈ L with r(a) = 1.

It is not difficult to see that this condition is equivalent to Proposition 2.10.5.
Related and more general results have been achieved in several directions. Robin-

son [R] has given a Pieri rule in the equivariant cohomology of the flag variety.
McNamara [Mc] introduced factorial Grothendieck polynomials, generalizations of
factorial Schur functions, and has given a rule for computing the structure constants
for various of their products.

This paper is organized as follows. In Section 3, we introduce various types of
tableaux which will appear throughout the paper. In Section 4, we prove Propo-
sitions 2.7 and 2.10, the nonnegativity property and positivity criteria of cL. In
Section 5, we outline the main steps in our proof of Theorem 2.4, whose two dif-
ficult technical lemmas are proved in Sections 7 and 8. In Section 6, we define a
set of involutions required for the proofs of these two lemmas. In Section 9, we
describe a weight preserving bijection between equivariant Littlewood-Richardson
skew tableaux and trapezoid puzzles, which restricts to a bijection between pos-
itive equivariant Littlewood-Richardson skew tableaux and Knutson-Tao puzzles.
In Section 10, we recall the Molev-Sagan rule.

3. Several Types of Tableaux

In this section we collect the definitions of the several types of tableaux which
we will encounter in the remainder of the paper: reverse barred tableaux, reverse
barred subtableaux, and reverse hatted tableaux. The latter two are refinements
of the first.

A reverse barred tableau of shape µ is a skew barred tableau of shape ∅∗µ;
alternatively, it can be defined as a reverse Young diagram of shape µ, each of whose
boxes is filled with either an integer k or a barred integer k, k ∈ {1, . . . , d}, in such
a way that the values of the entries, without regard to whether or not they are
barred, weakly increase along any row from left to right and strictly increase along
any column from top to bottom. We denote the set of all reverse barred tableaux
of shape µ by B(µ). If B ∈ B(µ), then define λ ∗ B to be the skew barred tableau
obtained by placing the Young tableau whose i-th row consists of λi i’s above and
to the right of B. Then B 7→ λ ∗ B defines a bijection from {B ∈ B(µ) | (λ ∗ B)u

is Yamanouchi} to the equivariant Littlewood-Richardson skew tableaux of shape
λ ∗ µ, whose inverse map is L 7→ L|µ. Any a ∈ B also corresponds to an entry
a ∈ λ ∗B. Define Bu and Bu

<a to be (∅ ∗B)u and (∅ ∗B)u
<a respectively.

A reverse barred subtableaux of shape µ is a reverse Young diagram µ
each of whose boxes contains either an integer k, a barred integer k, or is empty,
where k ∈ {1, . . . , d}. A reverse subtableau of shape µ is a reverse barred
tableau of shape µ which has no barred entries. We do not define any notion of
row semistrictness or column strictness for such objects, as no such conditions will
be required for our purposes. Denote the set of all reverse subtableaux and reverse
barred subtableaux of shape µ by Rsub(µ) and Bsub(µ) respectively. We have the
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following containments:
Rsub(µ) ⊂ Bsub(µ)

∪ ∪

R(µ) ⊂ B(µ)

For B ∈ Bsub(µ) and a ∈ B, define Bu and Bu
<a just as for elements of B(µ),

assuming that when reading the unbarred column word of B, both barred entries

and empty boxes are skipped over. If B ∈ Bsub(µ), then define B̃ ∈ Rsub(µ) to
be the reverse subtableau obtained by removing all bars from entries of B, i.e.,
replacing each barred entry of B by an unbarred entry of the same value.

A reverse hatted tableau of shape µ is a reverse Young diagram µ each of
whose boxes is filled with either a(n) (un-hatted) integer k, a left hatted integer ǩ, or

a right hatted integer k̂, k ∈ {1, . . . , d}, such that the values of the entries, without
regard to whether or not they are hatted, weakly increase along any row from left
to right and strictly increase along any column from top to bottom. Denote the
set of all reverse hatted tableaux of shape µ by H(µ). If H is a reverse hatted
tableau, then define H to be the reverse barred tableau produced by replacing all
hats (right and left) by bars. Hence for a reverse barred tableau B with m barred
entries, there are 2m reverse hatted tableaux H such that H = B (since each k

of B can be replaced by either ǩ or k̂). For a ∈ H , define Hu and Hu
<a to be

H
u

and H
u

<a respectively. Define H l (resp. Hr) to be the set of left-hatted (resp.
right-hatted) entries of H .

We next give two different ways to generalize the polynomial cL defined in Section
2. Let ξ ∈ Nd. For B ∈ Bsub(µ), define

(8) cξ,B =
∏

a∈B

a barred

(yeξ,B(a) − yfB(a)),

where eξ,B(a) := (ξ + ω(Bu
<a))|a| and fB(a) := |a|′ + c(a) − r(a), a ∈ B. For

H ∈ H(µ), define

(9) dξ,H =
∏

a∈Hl

yeξ,H(a)

∏

a∈Hr

(−yfH(a)),

where eξ,H(a) := (ξ + ω(Hu
<a))|a| and fH(a) := |a|′ + c(a) − r(a), a ∈ H . In both

(8) and (9), the empty product is defined to equal 1.
Let B ∈ B(µ). By definition,

(10) cλ∗B = cλ+ρ+1,B .

In addition, the equation

(11) cξ,B =
∑

H∈H(µ)

H=B

dξ,H

expresses cξ,B by expanding (8) in terms of monomials in the yi’s. Combining (10)
and (11), we have

(12) cλ∗B =
∑

H∈H(µ)

H=B

dλ+ρ+1,H .

If R ∈ Rsub(µ), then define (x | y)R =
∏

a∈R

(
xa − yfR(a)

)
. This definition is

consistent with the definition of (x | y)R, R ∈ R(µ), given in Section 2.
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4. Proofs of Nonnegativity Property and Positivity Criteria

Let L ∈ LRν
λ,µ, and let B = L|µ. For a ∈ B, which we also view as an entry of

L, define Lu
≤a to be Lu

<a if a is barred, or Lu
<a appended with a if a is not barred.

Define
∆(a) = ω(Lu

≤a)|a| − c(a) + r(a).

If a is barred, then ω(Lu
≤a) = ω(Lu

<a); hence ∆(a) gives the difference between

the two indices i − j of the factor yi − yj corresponding to a in (3). Therefore
Propositions 2.7 and 2.10 are equivalent to the following two lemmas respectively.

Lemma 4.1. If ∆(a) < 0 for some barred a ∈ B, then ∆(b) = 0 for some barred
b ∈ B.

Lemma 4.2. The following are equivalent:
(i) ∆(a) > 0 for all barred a ∈ B.
(ii) ∆(a) > 0 for all barred a ∈ B with r(a) = 1.
(iii) ∆(a) ≥ r(a) for all barred a ∈ B.

Before proving these two lemmas, we first establish some properties of ∆.

Lemma 4.3. The function ∆ : B → Z satisfies the following properties:
(i) If a ∈ B and c(a) = 1, then ∆(a) ≥ 0, with equality implying that a is barred.
(ii) If one moves left by one box, then ∆ can decrease by at most one. If it does
decrease by one, then the left box must be barred.
(iii) If ∆(a) ≤ 0 for some a ∈ B, then ∆(b) = 0 for some barred b ∈ B on the same
row as a.
(iv) The function a 7→ ∆(a) − r(a) is weakly decreasing as one moves down along
any column.

Proof. (i) Since r(a) ≥ 1, ∆(a) ≥ 0. If ∆(a) = 0, then r(a) = 1 and ω(Lu
≤a)|a| = 0.

The latter requirement implies that a is barred.
(ii) If entry m lies one box left of a, then −c(m) = −c(a) − 1, r(m) = r(a), and
ω(Lu

≤m)|m| ≥ ω(Lu
≤a)|m| ≥ ω(Lu

≤a)|a|, where the first inequality is an equality if
and only if m is barred. The second inequality is a consequence of the fact that the
unbarred column word of L is Yamanouchi.
(iii) Let m be rightmost entry in the same row as a. If ∆(m) = 0, then by (i), m is
barred, so letting b = m we are done. Otherwise ∆(m) > 0. By (ii), as one moves
left from m to a along the row the two entries lie on, one must encounter some
barred b for which ∆(b) = 0.
(iv) If entry m lies one box below a, then ω(Lu

≤a)|a| = ω(Lu
≤m)|a| ≥ ω(Lu

≤m)|m|,
since the unbarred column word of L is Yamanouchi. �

Proof of Lemmas 4.1 and 4.2. Lemma 4.1 is a special case of Lemma 4.3(iii). In
Lemma 4.2, implications (iii) =⇒ (i) =⇒ (ii) are clear. We prove (ii) =⇒
(iii). Suppose that a ∈ B is a barred entry such that ∆(a) < r(a). Let m be the
bottom entry in column c(a). By Lemma 4.3(iv), ∆(m) < r(m). Since r(m) = 1,
∆(m) ≤ 0. By Lemma 4.3(iii), ∆(b) = 0 for some barred b on the bottom row of
B. �

5. Generalization of Stembridge’s Proof

In this section we list the main steps in the proof of Theorem 2.4. The bulk of
the technical work, however, namely the proofs of Lemmas 5.1 and 5.2, is taken
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up in the three subsequent sections. The underlying logic and structure of our
arguments in this and the following three sections follows Stembridge [St], who
works out similar results for ordinary Schur functions.

For k ∈ N, define the polynomial (xj | y)k = (xj − y1) · · · (xj − yk). For ξ =
(ξ1, . . . , ξd) ∈ Nd, define aξ(x | y) = det[(xj | y)ξi ]1≤i,j≤d.

Lemma 5.1. aλ+ρ(x | y)sµ(x | y) =
∑

B∈B(µ)

cλ∗Baλ+ρ+ω(Bu)(x | y).

Lemma 5.2.
∑

cλ∗Baλ+ρ+ω(Bu)(x | y) = 0, where the sum is over all B ∈ B(µ)

such that the unbarred column word of λ ∗B is not Yamanouchi.

The following three corollaries follow easily from these two lemmas.

Corollary 5.3. aλ+ρ(x | y)sµ(x | y) =
∑

cλ∗Baλ+ρ+ω(Bu)(x | y), where the sum is

over all B ∈ B(µ) such that the unbarred column word of λ ∗B is Yamanouchi.

Suppose that B ∈ B(µ) is such that the unbarred column word of ∅ ∗ B is Ya-
manouchi. If B has barred entries, then by Propositions 2.7 and 2.10.5, c∅∗B = 0.
If B has no barred entries, then B must be the unique reverse tableau of shape µ
and content µ: B contains a 1 at the top of each column, and its entries increase by
1 per box as one moves down any column. Thus, by setting λ = ∅ in Corollary 5.3,
we arrive at a new proof of the bialternant formula for the factorial Schur function
([GG], [Ma1]):

Corollary 5.4. sµ(x | y) = aµ+ρ(x | y)/aρ(x | y).

Dividing both sides of the equation in Corollary 5.3 by aρ(x | y) and applying Corol-
lary 5.4 yields

Corollary 5.5. sλ(x | y)sµ(x | y) =
∑

cλ∗Bsλ+ω(Bu)(x | y), where the sum is over
all B ∈ B(µ) such that the unbarred column word of λ ∗B is Yamanouchi.

Regrouping the terms in this summation:

sλ(x | y)sµ(x | y) =
∑

ν




∑

B∈B(µ)
(λ∗B)u Yamanouchi

λ+ω(Bu)=ν

cλ∗B


 sν(x | y) =

∑

ν


 ∑

L∈LRν
λ,µ

cL


 sν(x | y).

This proves Theorem 2.4.

Remark 5.6. Let κ ∈ Pd, κ ≤ µ, i.e., κi ≤ µi, i = 1, . . . , d. One can extend our
analysis to factorial skew Schur functions of the form sµ/κ(x | y) (see [Ma1]). One
replaces B(µ) with B(µ/κ), the set of all reverse barred tableaux of shape µ/κ. All
above definitions extend naturally. For example, for B ∈ B(µ/κ), cλ∗B is computed
just as for B ∈ B(µ), but with all boxes of κ ⊂ µ assumed to be empty. All
proofs are virtually unchanged, modified only by formally replacing µ by µ/κ. As a
generalization of Corollary 5.5, we obtain

sλ(x | y)sµ/κ(x | y) =
∑

cλ∗Bsλ+ω(Bu)(x | y),

where the sum is over all B ∈ B(µ/κ) such that (λ ∗ B)u is Yamnaouchi. This
generalizes Zelevinsky’s extension of the Littlewood-Richardson rule ([St], [Z]).
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6. Involutions on Reverse Hatted Tableaux

In his proof, Stembridge [St] utilizes involutions on Young tableaux introduced
by Bender and Knuth [BK]. There is an analogous set of involutions on H(µ)
which satisfy properties required for the proofs of Lemmas 5.1 and 5.2 (see Lemma
6.4). We remark that we were unable to find a suitable set of involutions on B(µ),
and this is what initially led us to examine H(µ). If the involutions on H(µ) are
restricted to R(µ), then the Bender-Knuth involutions are recovered.

6.1. The Involutions s1, . . . , sd−1 of H(µ). Let H ∈ H(µ), and let i ∈ {1, . . . , d−
1} be fixed. Then an entry a of H with value i or i + 1 is

• free if there is no entry of value i + 1 or i respectively in the same column;
• semi-free if there is an entry of value i + 1 or i respectively in the same

column, and at least one of the two is hatted; or
• locked if there is an entry of value i + 1 or i respectively in the same

column, and both entries are unhatted.

Note that any entry of value i or i + 1 must be exactly one of these three types,
and each hatted entry of value i or i + 1 must be either free or semi-free. In any
row, the free entries are consecutive. Semi-free entries come in pairs, one below the
other, as do locked entries.

To define the action of si on H ∈ H(µ), we first consider how it modifies the free
entries of H (see Example 6.2):

1. Let S be a maximal string of free entries with values i and i+1 on some row
of H . Let S◦, Sl, and Sr denote the unhatted, left-hatted, and right-hatted
entries of S respectively. Modify S◦ ∪ Sl, as follows:

A Change the value of each entry of value i to i + 1 and each entry of
value i + 1 to i, without changing whether or not it has a left hat.

B Swap the entries of value i with those of value i+1, as follows: remove
all entries of value i; then move each entry of value i + 1, beginning
with the rightmost one, into the rightmost available empty box; then
put the removed entries of value i back into the empty boxes of B,
preserving the relative order of barred and unbarred entries.

In this step, S◦∪Sl has been modified. No other entries of H , in particular
no entries of Sr, have been modified, changed, or moved. Denote the mod-
ified string S by S1. A potential problem has been introduced: the values
of the entries of S1 may not be weakly increasing as one moves from left to
right. In step 2 we correct for this.

2. Let (Sr
1)i and (Sr

1)i+1 denote the entries of Sr
1 of value i and i + 1 respec-

tively. Beginning with the leftmost entry a ∈ (Sr
1)i, let b be the entry of

S1 to the left of a. If b has value i + 1, then switch the entries b and a,

and then change the left entry from î to î + 1. Now move right to the next
entry of (Sr

1)i, and repeat this procedure until it has been performed on
all entries of (Sr

1)i. Next, beginning with the rightmost entry a ∈ (Sr
1)i+1,

let b be the entry of S1 to the right of a. If b has value i, then switch the

entries b and a, and then change the right entry from î + 1 to î. Now move
left to the next entry of (Sr

1)i+1, and repeat this procedure until it has been
performed on all entries of (Sr

1)i+1.
Upon completion, we denote by S2 the resulting string obtained by mod-

ifying S1. It is weakly increasing.
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We next consider how si modifies the semi-free entries of H :

3. For a semi-free pair consisting of two entries lying in the same column of
H , each entry removes its hat (if it has one) and places it on top of the
other entry.

The reverse tableau siH is obtained by applying steps 1 and 2 to each maximal
string S of free entries of H (replacing S by S2) and then applying step 3 to each
semi-free pair.

Example 6.2. We illustrate steps 1 and 2. Suppose that i = 2, and S consists of
the following maximal string of consecutive free entries lying along some row of H:

S =2 2̂ 2̌ 2 2 2̌ 2̂ 2 3 3̌ 3̂ 3̌

S◦ ∪ Sl =2 2̌ 2 2 2̌ 2 3 3̌ 3̌

3 3̌ 3 3 3̌ 3 2 2̌ 2̌

2 2̌ 2̌ 3 3̌ 3 3 3̌ 3

S1 =2 2̂ 2̌ 2̌ 3 3̌ 2̂ 3 3 3̌ 3̂ 3

S2 =2 2̂ 2̌ 2̌ 3 3̂ 3̌ 3 3 3̌ 3̂ 3

In line 2 we remove the entries of Sr from the picture for convenience, in order to
focus attention on the operations performed in step 1, which only affect S◦ ∪Sl. In
lines 3 and 4 the results of applying steps 1A and 1B successively to S◦ ∪ Sl are
shown. In line 5, the removed entries from Sr are replaced. In line 6, the result of
applying step 2 to S1 is shown. Only two entries are changed in this step.

This algorithm defines maps bl : H l → (siH)l and br : Hr → (siH)r, as follows.
If a ∈ H and the value of a is neither i nor i + 1, then a remains unchanged in
siH . Thus in this case, if a ∈ H l or a ∈ Hr, then we define bl(a) = a or br(a) = a
respectively. Assume the value of a is i or i + 1. If a ∈ H l is free, then in step 1A,
the value of a is either increased or decreased by 1; in step 1B, it is then moved
to a different box; in step 2, this new entry in this new box is moved at most one
box and changed by at most one in value, resulting in the entry we denote by bl(a).
If a ∈ Hr is free, then a is unchanged in step 1 and moved at most one box and
changed by at most one in value in step 2. Denote the resulting entry by br(a). If
a ∈ H l or a ∈ Hr is semi-free, then bl(a) or br(a) is the entry in siH which it gives
its hat to.

In Example 6.2, if a is the rightmost entry of S, which is a 3̌, then bl(a) is the 2̌
which is the fourth entry of S2 from left. These two entries are, of course, entries
of H and siH respectively.

Lemma 6.3. si is an involution on H(µ), i ∈ {1, . . . , d− 1}.

Proof. We begin by showing that siH ∈ H(µ), i.e., siH is row semistrict and
column strict. The only nonobvious condition is that if S is any maximal string of
free entries of H lying along some row, and S2 the string that replaces it in siH ,
then siH weakly increases along the left and right boundaries of S2. To see this,
note that if any entry of H of value i+1 is free, then so are all entries of value i+1
to the right of it in the same row; and if any entry of H of value i is free, then so
are all entries of value i to the left of it in the same row. Thus by the maximality
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of S, there are no entries of H of value i in the same row and to the right of S, and
there are no entries of H of value i + 1 in the same row and to the left of S. Hence
changing values of S from i to i + 1 and vice versa to form S2 does not affect the
row semistrictness of H along its boundaries.

We next show that s2
i = id. Since the free entries of H lie in the same boxes as

the free entries of siH , it suffices to show that s2
i (S) = S for any maximal string

S of free entries of H (where siS is defined to be siH restricted to S). If step 1
is applied to (siS)◦ ∪ (siS)l, then one sees that the same entries of S◦ ∪ Sl are
retrieved, although possibly not in their same boxes. However the relative order of
the entries is the same. Now one checks that for a ∈ Hr, b2

r(a) = a. �

Let σi be the simple transposition of the permutation group Sd which exchanges
i and i + 1. The involution si satisfies the following properties:

Lemma 6.4. Let H ∈ H(µ), a ∈ H l, and b ∈ Hr. Then
(i) |bl(a)| = σi|a|
(ii) ω((siH)u) = σiω(Hu).
(iii) ω((siH)u

<bl(a))|bl(a)| = ω(Hu
<a)|a|

(iv) eσiξ,siH(bl(a)) = eξ,H(a)
(v) fsiH(br(b)) = fH(b)
(vi) dσiξ,siH = dξ,H

Proof. If the value of a is not i or i + 1, then (i), (iii), and (iv) are obvious. If the
value of b is not i or i+1, then (v) is obvious. Thus we assume for these parts that
the values of a and b are either i or i + 1. Parts (i), (ii), and (iii) follow from the
construction of si.
(iv) By parts (i) and (iii),

eσiξ,siH(bl(a)) = (σiξ + ω((siH)u
<bl(a)))|bl(a)| = (σiξ)σi|a| + ω((siH)u

<a)|bl(a)|

= (ξ + ω(Hu
<a))|a| = eξ,H(a).

(v) Under br, the entry b is either kept in place, moved up, down, left, or right by
one box. In these cases, its value is either left unchanged, decreased, increased, in-
creased, or decreased by one respectively. The result now follows from the definition
of fH .
(vi) This is a consequence of (iv), (v), and (9). �

Let H ∈ H(µ) and let σ ∈ Sd. Choose some decomposition of σ into simple
transpositions: σ = σi1 · · ·σit

. Define σH := si1 · · · sit
H . Although σH depends

on the decomposition chosen for σ, by Lemma 6.4(ii) and (vi),

(13) ω((σH)u) = σω(Hu) and dσξ,σH = dξ,H .

In particular, both ω((σH)u) and dσξ,σH are independent of the decomposition of
σ.

7. Proof of Lemma 5.1

Lemma 5.1 is a generalization of [St, (1)]. In proving [St, (1)], Stembridge uses
the simple fact that if S is a tableau and ξ = (ξ1, . . . , ξd) ∈ Nd, then xξxS = xξ+ω(S).
The generalization of this fact which we will need in order to prove Lemma 5.1 is
the following lemma. Define (x | y)ξ = (x1 | y)ξ1 · · · (xd | y)ξd .
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Lemma 7.1. Let R ∈ Rsub(µ) and let ξ ∈ Nd. Then

(x | y)ξ(x | y)R =
∑

B∈Bsub(µ)

B̃=R

cξ+1,B · (x | y)ξ+ω(Bu).

In fact, we only need this lemma for R ∈ R(µ). We prove this result more generally
for R ∈ Rsub(µ) only to allow for induction on the number of entries of R (and
thus allow for the possibility that some boxes of R are empty). We remark that
Rsub(µ) and Bsub(µ) were introduced in this paper solely to allow for induction in
this proof.

Proof. The proof is by induction on the number of entries in R. Let a be an entry
of R with value k, such that R has no entry of value k in any column to the left of
a. Let α be the box containing a. Let R′ = R \ a be the reverse subtableau which
results from removing a from R.

If B ∈ Bsub(µ) is such that B̃ = R, then the entry of B in box α, which we

denote by Bα, must either be k or k. Let B′ denote B \ Bα. The following three
sets are in bijection with one another:

{B ∈ Bsub(µ) | B̃ = R, Bα = k} ←→ {B ∈ Bsub(µ) | B̃ = R, Bα = k}

←→ {D ∈ Bsub(µ) | D̃ = R′}.

The first bijection simply adds a bar to Bα, and the second bijection removes Bα

from B, mapping B to B′. For brevity, we denote eB,ξ(Bα) and fB(Bα) by just
e(Bα) and f(Bα) respectively for the remainder of this proof. If Bα is unbarred,
then

cξ+1,B = cξ+1,B′ and (x | y)ξ+ω(Bu) = (x | y)ξ+ω((B′)u)(xd − ye(Bα)+1).

On the other hand, if Bα is barred, then

cξ+1,B = cξ+1,B′(ye(Bα)+1 − yf(Bα)) and (x | y)ξ+ω(Bu) = (x | y)ξ+ω((B′)u).

Thus,
∑

B∈Bsub(µ)

B̃=R

cξ+1,B(x | y)ξ+ω(Bu)

=
∑

B∈Bsub(µ)

B̃=R
Bα=k

cξ+1,B(x | y)ξ+ω(Bu) +
∑

B∈Bsub(µ)

B̃=R
Bα=k

cξ+1,B(x | y)ξ+ω(Bu)

=
∑

B∈Bsub(µ)

B̃=R
Bα=k

cξ+1,B′(x | y)ξ+ω((B′)u)(xBα
− ye(Bα)+1)

+
∑

B∈Bsub(µ)

B̃=R
Bα=k

cξ+1,B′(ye(Bα)+1 − yf(Bα))(x | y)ξ+ω((B′)u)

=
∑

B∈Bsub(µ)

B̃=R

(
cξ+1,B′(x | y)ξ+ω((B′)u)(xBα

− ye(Bα)+1)

+ cξ+1,B′(ye(Bα)+1 − yf(Bα))(x | y)ξ+ω((B′)u)
)
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=
∑

B∈Bsub(µ)

B̃=R

cξ+1,B′(x | y)ξ+ω((B′)u)(xBα
− yf(Bα))

=
∑

D∈Bsub(µ)

D̃=R′

(
cξ+1,D(x | y)ξ+ω(Du)

)
(xBα

− yf(Bα))

= (x | y)ξ(x | y)R′

(xBα
− yf(Bα))

= (x | y)ξ(x | y)R.

�

Proof of Lemma 5.1.

aλ+ρ(x | y)sµ(x | y)
(a)
=

∑

σ∈Sd

∑

R∈R(µ)

sgn(σ)(x | y)σ(λ+ρ)(x | y)R

(b)
=

∑

σ∈Sd

∑

R∈R(µ)

∑

B∈B(µ)

B̃=R

cσ(λ+ρ+1),B sgn(σ)(x | y)σ(λ+ρ)+ω(Bu)

(c)
=

∑

σ∈Sd

∑

R∈R(µ)

∑

B∈B(µ)

B̃=R

∑

H∈H(µ)

H=B

dσ(λ+ρ+1),H sgn(σ)(x | y)σ(λ+ρ)+ω(Hu)

=
∑

σ∈Sd

∑

H∈H(µ)

dσ(λ+ρ+1),H sgn(σ)(x | y)σ(λ+ρ)+ω(Hu)

(d)
=

∑

σ∈Sd

∑

H∈H(µ)

dσ(λ+ρ+1),σH sgn(σ)(x | y)σ(λ+ρ)+ω((σH)u)

(e)
=

∑

σ∈Sd

∑

H∈H(µ)

dλ+ρ+1,H sgn(σ)(x | y)σ(λ+ρ+ω(Hu))

=
∑

σ∈Sd

∑

B∈B(µ)

∑

H∈H(µ)

H=B

dλ+ρ+1,H sgn(σ)(x | y)σ(λ+ρ+ω(Hu))

(c)
=

∑

σ∈Sd

∑

B∈B(µ)

cλ+ρ+1,B sgn(σ)(x | y)σ(λ+ρ+ω(Bu))

(a)
=

∑

B∈B(µ)

cλ+ρ+1,Baλ+ρ+ω(Bu)(x | y)

(f)
=

∑

B∈B(µ)

cλ,Baλ+ρ+ω(Bu)(x | y).

Equality (a) follows from the definition of aµ, noting that σ(λ+ρ)+1 = σ(λ+ρ+1);
(b) follows from Lemma 7.1, setting S = R and ξ = σ(λ + ρ); (c) from (11), with
ξ = σ(λ + ρ); (e) from (13); and (f) from (10). For (d), we use the fact that for a
fixed σ and arbitrary decomposition σ = σi1 · · ·σit

, since each sij
is an involution

on H(µ), as H runs over all elements of H(µ), so does σH . �

8. Proof of Lemma 5.2

By (12), Lemma 5.2 is equivalent to the following lemma, whose statement and
proof generalize arguments in [St]. For H ∈ H(µ) and j a nonnegative integer,
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define H<j to be the sub-hatted tableau of H consisting of the portion of H lying
in columns to the right of j, and Hu

<j = (H<j)
u (and similarly for H≤j , H>j , etc.).

Lemma 8.1. Let λ ∈ Pn. Then

(14)
∑

dλ+ρ+1,Haλ+ρ+ω(Hu)(x | y) = 0,

the sum being over all H ∈ H(µ) for which λ + ω(Hu
≤j) 6∈ Pd for some j.

Proof. We call H ∈ H(µ) for which λ + ω(Hu
≤j) 6∈ Pd for some j a Bad Guy.

Let H be a Bad Guy, and let j be minimal such that λ + ω(Hu
≤j) 6∈ Pd. Having

selected j, let i be minimal such that (λ + ω(Hu
≤j))i < (λ + ω(Hu

≤j))i+1. Since

(λ + ω(Hu
≤j−1))i ≥ (λ + ω(Hu

≤j−1))i+1 (by the minimality of j), we must have

(λ + ω(Hu
≤j−1))i = (λ + ω(Hu

≤j−1))i+1, and column j of H must have an unhatted
i + 1 but not an unhatted i. Thus

(15) (λ + ρ + 1 + ω(Hu
≤j))i = (λ + ρ + 1 + ω(Hu

≤j))i+1.

Define H∗ to be the reverse tableau of shape µ obtained from H by replacing H>j

by si(H>j), and leaving H≤j unchanged. Notice first that H∗ is still semistandard.
Indeed, since σi applied to H>j can only change the values of its entries from i to i+1
and vice versa, the only possible violation of semistandardness of H∗ would occur
under the following scenario: (a) H has an entry a of value i in column j (which has

to be either an î or ǐ, and must lie directly above the entry i+1), (b) H has an entry
b of value i immediately to the left of a, and (c) si applied to H>j changes the value
of the entry in the position of entry b to i+1. However, this scenario is impossible.
If (a) and (b) both hold, then since H is semistandard, the entry of H immediately
below b must have value i+1 (we remark that the following property of the shape of
a reverse tableau is critical here: if a reverse tableau contains three of the four boxes
making up a square, namely the top-left, top-right, and bottom-right boxes, then it
must contain the bottom-left box of the square as well). Therefore the entry in box b
is not a free entry of H>j , so si does not change its value, i.e., (c) is violated. Notice
second that since H∗

≤j = H≤j , we have that H∗ is still a Bad Guy, and furthermore

the map H∗ 7→ H∗∗ replaces (H∗)>j by si((H
∗)>j) and leaves (H∗)≤j unchanged.

Therefore (H∗∗)>j = si((H
∗)>j) = si(si(H>j)) = H>j (since si is an involution

on reverse hatted tableaux; see Lemma 6.3), and (H∗∗)≤j = (H∗)≤j = H≤j . Thus
H 7→ H∗ gives an involution on the set of Bad Guys of H(µ).

We define maps b∗l : H l → (H∗)l and b∗r : Hr → (H∗)r, as follows. If a ∈ (H≤j)
l,

then define b∗l (a) = a. If a ∈ (H>j)
l, then during the construction of H∗, in the

process of applying si to H>j , a is mapped to bl(a) ∈ (H>j)
l. This same element

bl(a), regarded as an element of (H∗)l, is denoted by b∗l (a). The map b∗r is defined
analogously.

We wish to show that for a ∈ H l,

(16) eλ+ρ+1,H(a) = eλ+ρ+1,H∗(b∗l (a)),

and for a ∈ Hr,

(17) fH(a) = fH∗(b∗r(a)).

For a ∈ (H≤j)
l or a ∈ (H≤j)

r , both (16) and (17) are obvious. The proof of (17)
for a ∈ (H>j)

r follows in much the same manner as the proof of Lemma 6.4(v).
It remains to prove (16) for a ∈ (H>j)

l. For such a, by Lemma 6.4(iii),

(18) ω(j<Hu
<c(a))|a| = ω(j<(H∗)u

<c(b∗
l
(a)))|b∗l (a)|,
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where l<H<m := H>l ∩H<m. By (15),

(19) (λ+ρ+1+ω(Hu
≤j))|a| = (λ+ρ+1+ω(Hu

≤j))σi|a| = (λ+ρ+1+ω((H∗)u
≤j))σi|a|.

Thus

eλ+ρ+1,H(a) =
(
λ + ρ + 1 + ω(Hu

<c(a)))
)
|a|

=
(
λ + ρ + 1 + ω(Hu

≤j) + ω(j<Hu
<c(a))

)
|a|

(a)
=

(
λ + ρ + 1 + ω((H∗)u

≤j)
)
σi|a|

+ ω(j<(H∗)u
<c(b∗

l
(a)))|b∗l (a)|

(b)
=

(
λ + ρ + 1 + ω((H∗)u

<c(b∗
l
(a)))

)
|b∗

l
(a)|

= eλ+ρ+1,H∗(b∗l (a)).

Equality (a) follows from (18) and (19); (b) follows from Lemma 6.4(i). This
completes the proofs of (16) and (17).

Now (16) and (17) imply

dλ+ρ+1,H =
∏

a∈Hl

yeλ+ρ+1,H(a)

∏

a∈Hr

(−yfH (a))

=
∏

a∈Hl

yeλ+ρ+1,H∗ (b∗
l
(a))

∏

a∈Hr

(−yfH∗ (b∗
l
(a)))

=
∏

a∈(H∗)l

yeλ+ρ+1,H∗ (a)

∏

a∈(H∗)r

(−yfH∗ (a)) = dλ+ρ+1,H∗ .

(20)

By σiω(Hu
>j) = ω((H∗)u

>j) and (19), σi(λ + ρ + ω(Hu)) = λ + ρ + ω((H∗)u); thus

(21) aλ+ρ+ω(Hu)(x | y) = −aλ+ρ+ω((H∗)u)(x | y).

By (20) and (21), the contributions to (14) of two Bad Guys paired under the
involution H 7→ H∗ are negatives, and thus cancel. If a Bad Guy is paired with
itself under H 7→ H∗, then (21) implies that its contribution to (14) is 0. �

9. Bijection with Trapezoid Puzzles

In this section we define trapezoid puzzles, which are generalizations of Knutson-
Tao puzzles. We give a weight-preserving bijection between equivariant Littlewood-
Richardson skew tableaux and trapezoid puzzles which restricts to a bijection be-
tween positive equivariant Littlewood-Richardson skew tableaux and Knutson-Tao
puzzles. Thus the formulas described in Section 2 for the structure constants cν

λ,µ

and Cν
λ,µ, λ, µ, ν ∈ Pd,n, can be indexed by trapezoid puzzles instead of equivariant

Littlewood-Richardson skew tableaux.

9.1. Trapezoid Puzzles. A puzzle piece is one of the eight figures shown in
Figure 3, each of whose edges has length 1 unit. Each puzzle piece is either an
equilateral triangles or a rhombus, together with a fixed orientation, and a labelling
of each edge with either a 1 or 0. The rightmost puzzle piece in Figure 3 is called
an equivariant puzzle piece; we color it cyan.

Consider the isosceles trapezoid formed by placing an equilateral triangle of
side length n on top of a rhombus of side length n and removing the common
segment (see Figure 4, in which the common segment is darkened). Consider a
partitioning P of this trapezoid into puzzle pieces in such a way that if two puzzle
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Figure 3. The eight puzzle pieces

pieces share an edge, then both puzzle pieces must have the same label on that
edge. In this partitioning, one assumes that the common segment between the
triangle and rhombus is not present. The boundary of P , denoted by ∂P , is the
set of edges of P lying on the boundary of the trapezoid. It is divided into five
parts: northeast, northwest, east, west, and south (denoted by ∂PNE, ∂PNW, ∂PE,
∂PW, and ∂PS). These correspond to the northeast and northwest boundaries of
the equilateral triangle, and the east, west, and south boundaries of the rhombus
respectively. The partitioning P is called a trapezoid puzzle if ∂PE and ∂PW

consist entirely of 0 edges. A Knutson-Tao puzzle is a trapezoid puzzle which
has no 1-triangle puzzle pieces in the rhombus region.

One forms three n-digit binary words by reading the labels along ∂PNE, ∂PNW,
and ∂PS: the labels of ∂PNE are read from top to bottom, the labels of ∂PNW from
bottom to top, and the labels of ∂PS from left to right. To these three binary words
we associate three partitions of Pd,n under the map w 7→ (η1, . . . , ηd) ∈ Pd,n, where
ηj is the number of zeros of w which lie to the right of the j-th one of w from the
left (for example, 0110001010 7→ (5, 5, 2, 1) ∈ P4,10). Denote by Pν

λ,µ (resp. Pν +
λ,µ)

the set of all trapezoid puzzles (resp. Knutson-Tao puzzles) P for which these three
partitions are λ, µ, and ν, in that order.

Let D denote the common segment forming the south border of the triangle and
the north border of the rhombus. For any equivariant puzzle piece of P , draw two
lines from the center of the puzzle piece to D: one line L1 parallel to ∂PNW and the
other L2 parallel to ∂PNE. The lines L1 and L2 cross D at e− .5 and f − .5 units
from its right endpoint, respectively (e, f are both integers). If the equivariant
puzzle piece lies above D, then e > f ; if it lies below D, then e < f ; if it is bisected
by D, then e = f . The factorial weight of the puzzle piece is ye − yf , and
the equivariant weight of the puzzle piece is Yn+1−f − Yn+1−e. Let cP (resp.
CP ) denote the product of the factorial weights (resp. equivariant weights) of all
the equivariant puzzle pieces of P . For example, in Figure 4, cP = (y5 − y6)(y5 −
y5)(y5 − y4)(y2 − y1) = 0 and CP = (Y4 − Y3)(Y4 − Y4)(Y4 − Y5)(Y7 − Y8) = 0.

Proposition 9.2. There is a weight preserving bijection Φ : Pν
λ,µ → LR

ν
λ,µ, which

restricts to a weight preserving bijection Pν +
λ,µ → LRν +

λ,µ. By weight-preserving,
we mean that for P ∈ Pν

λ,µ, cP and cΦ(P ) are equal, and moreover are identical
expressions; and similarly for CP and CΦ(P ).

Proof. The bijection Φ, illustrated in Figure 6, generalizes Tao’s ‘proof without
words’ of the bijection between puzzles and tableaux in the nonequivariant setting
[V, Figure 11]. The object in the center of Figure 6 represents a truncated generic
trapezoid puzzle P . The bottom of the rhombus portion of the trapezoid has been
removed. To retrieve this portion, one extends the rhombus portion downward,
meanwhile extending the white paths to the bottom of the figure. In the diagram,
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Figure 4. A trapezoid puzzle P , with n = 8, d = 2. The n-digit
binary words of the NE, NW, and S sides of the boundary are
00001010, 10000010, and 00100100 respectively. Thus P ∈ Pν +

λ,µ,

where λ = (2, 1), µ = (6, 1), and ν = (4, 2). The darkened common
segment is displayed only to illustrate that the trapezoidal shape
is formed from an equilateral triangle and a rhombus; it is not part
of the trapezoid puzzle.

black represents regions of 1 triangles, green represents regions of 0 triangles, white
represents regions of non-equivariant rhombi, and cyan represents regions of equi-
variant rhombi.

From P , one may construct the Young tableau Y and reverse barred tableau B
appearing in Figure 6. The shape of Y is determined by the lengths indicated on
∂PNE, and the i-th row is filled with unbarred i’s. The reverse barred tableau B is
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1234567

Figure 5. The three equivariant puzzle pieces have factorial
weights y6−y3, y5−y5 (= 0), and y1−y4, and equivariant weights
Y5 − Y2, Y3 − Y3 (= 0), and Y7 − Y4 respectively.

constructed using the regions of P consisting of rhombus puzzle pieces labelled by
xi,j (where x = a, b, c, or d). To each puzzle piece in such a region there corresponds
an entry of value j in row i of B. An equivariant puzzle piece corresponds to a
barred entry of B; a non-equivariant puzzle piece corresponds to an unbarred entry
of B. The skew barred tableau Φ(P ) is constructed by placing Y above and to the
right of B.

We list two properties of any L ∈ LRν
λ,µ:

(a) L|µ is column strict; and
(b) the unbarred column word of L is Yamanouchi.

Let P ∈ Pν
λ,µ. For i ∈ {1, . . . , d} (where d = 4 in Figure 6), there is a path Pi

in P consisting of 1-triangles and rhombi which begins on ∂PNE, moves only west
or southwest, and ends on ∂PS (see Figure 7). Each path Pi has segments Pi,j

consisting of the rhombus pieces lying in the regions of Figure 6 labelled by xi,j

(where x = a, b, c, or d).
We list two properties of P :

(a)’ for i = 2, . . . , d and all j, the distance from the leftmost edge of Pi,j to
∂PNE is greater than or equal to the distance from the leftmost edge of
Pi−1,j to to ∂PNE;

(b)’ the interiors of the Pi do not touch; and

Properties (a)’ and (b)’ of P imply properties (a) and (b) of Φ(P ) respectively.
Conversely, given any L ∈ LRν

λ,µ, Figure 6 shows how to construct a puzzle Φ−1(L).

Properties (a) and (b) of L ensure that the puzzle Φ−1(L) can be constructed, and
imply that it satisfies (a)’ and (b)’. Uniqueness is clear.
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To each equivariant puzzle piece of P there corresponds a barred entry of Φ(P ),
and they both determine the same factor yi − yj of cP and cΦ(P ) respectively.
Therefore Φ is weight preserving, and thus restricts to a bijection from {P ∈ Pν

λ,µ |

cP > 0} to {L ∈ LRν
λ,µ | cL > 0} = LRν +

λ,µ. To see that the former set is Pν +
λ,µ,

observe that P is not a Knutson-Tao puzzle if and only if P contains a 1 triangle
lying below D if and only if P contains an equivariant puzzle piece which is bisected
by D if and only if cP = 0. �

Using Theorem 2.4, Corollary 2.9, and Proposition 9.2, we obtain a proof of the
following theorem; these formulas, expressed in terms of Pν +

λ,µ, are due to Knutson

and Tao [KT].

Theorem 9.3. For λ, µ, ν ∈ Pd,n,

cν
λ,µ =

∑

P∈Pν
λ,µ

cP =
∑

P∈Pν +
λ,µ

cP and Cν
λ,µ =

∑

P∈Pν
λ,µ

CP =
∑

P∈Pν +
λ,µ

CP .
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Figure 6. A generic trapezoid puzzle P (center), and its as-
sociated positive equivariant Littlewood-Richardson skew tableau
Φ(P ) (top-right, top-left). The bottom portion of P has been trun-
cated. In P , black represents regions of 1 triangles, green represents
regions of 0 triangles, white represents regions of non-equivariant
rhombi, and cyan represents regions of equivariant rhombi.
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Figure 7. The paths Pi, i = 1, . . . , 4, of the trapezoid puzzle P of
Figure 6. The segments Pi,j of each path are shaded. The segments
may contain two types of puzzle pieces: equivariant puzzle pieces
and rhombi with horizontal 0-edges.
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Figure 8. A trapezoid puzzle P (center), with the color scheme
described in Figure 6. Here d = 3, n = 13, λ = (5, 2, 1), µ =
(8, 5, 1), ν = (9, 4, 2). The corresponding equivariant Littlewood-
Richardson skew tableau Φ(P ) appears top-right, top-left. The
common segment D separating the triangle from the rhombus is
darkened. The fact that 1-triangles lie below D implies that cP =
CP = 0. Indeed, cP = (y9 − y4)(y5 − y2)(y2 − y1)(y2 − y2)(y2 −
y3)(y3 − y5)(y6 − y8) = 0, and CP = (Y10 − Y5)(Y12 − Y9)(Y13 −
Y12)(Y12 − Y12)(Y11 − Y12)(Y9 − Y11)(Y6 − Y8) = 0.

10. The Molev-Sagan Rule

In this section we recall the Molev-Sagan rule for computing the coefficients cν
λ,µ

[MS].
The forward skew diagram λ ? µ is obtained by placing the Young diagram λ

above and to the right of the Young diagram µ (see Figure 9). Note the difference
between this object and the skew diagram λ ∗ µ defined in Section 2: in λ ? µ,
µ is represented by a Young diagram rather than a reverse Young diagram. One
defines forward skew barred tableau L, unbarred column word of L, Lu,
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and Lu
<a in essentially the same way as their counterparts in Section 2.2, with the

only difference being that the definitions are applied to the shape λ ? µ rather than
λ ∗ µ.

Definition 10.1. An equivariant Littlewood-Richardson forward skew tableau

is a forward skew barred tableau whose unbarred column word is Yamanouchi. De-
note the set of all equivariant Littlewood-Richardson forward skew tableaux of shape
λ ? µ and unbarred content ν by LRFν

λ,µ.

For L a forward skew barred tableau, define

eL =
∏

a∈L

a barred

(
y|a|′+ω(Lu

<a)|a|
− y|a|+c(a)−r(a)

)
,

where the rows of µ are numbered from top to bottom and the columns from left
to right, and |a|′ = d + 1− |a|.

Theorem 10.2 (Molev-Sagan Rule). cν
λ,µ =

∑

L∈LRFν
λ,µ

eL,

We remark that [MS, (8) and Theorem 3.1] is more general than Theorem 10.2,
as it allows for the y variables in sλ(x | y) and the y variables in sµ(x | y) of (1) to
be two different families of variables.

4 5

3 3 4

1 2 2 4

1 1

2

3

Figure 9. An equivariant Littlewood-Richardson forward skew
tableau L of shape λ?µ and unbarred content ν, where λ = (2, 1, 1),
µ = (4, 3, 2), and ν = (3, 2, 2, 2, 1). The unbarred column word,
1, 1, 2, 3, 2, 4, 3, 5, 1, 4, is Yamanouchi. If d = 5, then eL = (y2 −
y7)(y6 − y3)(y5 − y2).

In the following example, we recompute the coefficients cν
λ,µ of Example 2.11

using the Molev-Sagan rule.

Example 10.3. Let d = 3, λ = (1, 1), µ = (3, 2), and ν = (3, 2, 1). We list all
L ∈ LRFν

λ,µ, and for each L we give eL:
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2 3

1 1 1

2

1

eL = y4 − y3

2 3

1 1 2

2

1

eL = y3 − y4

2 3

1 1 3

2

1

eL = y1 − y5

2 3

1 1 1

2

1

eL = y5 − y2

2 3

1 1 1

2

1

eL = y6 − y1

2 2

1 1 3

2

1

eL = y3 − y2

2 3

1 1 3

2

1

eL = y2 − y3

2 2

1 1 3

2

1

eL = y4 − y1

By Theorem 10.2, cν
λ,µ = (y4 − y3) + (y3 − y4) + (y1 − y5) + (y5 − y2) + (y6 − y1) +

(y3 − y2) + (y2 − y3) + (y4 − y1).

The presence of terms of the form yi − yj with both i > j and i < j in this
example and the example of Figure 9 illustrate that in general the Molev-Sagan
rule does not yield a positive formula for cν

λ,µ.
We remark that Corollary 2.8 does not hold if cL is replaced by eL and LRν

λ,µ by

LRFν
λ,µ. (In fact, Figure 9 gives a counterexample, since µ 6⊆ ν, implying cν

λ,µ = 0,

but eL 6= 0.) This is due to the nonpositivity of the Molev-Sagan rule.
The Molev-Sagan rule and Theorem 2.4 of course produce the same coefficients

cν
λ,µ. It would be interesting to deduce one rule directly from the other.
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